×

The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects. (English) Zbl 1198.34036

This paper is concerned with the study of multiplicity of solutions for perturbed impulsive Hamiltonian boundary value problems of the form
\[ \begin{cases}-\ddot{u}+A(t)u=\lambda \nabla F(t,u)+\mu \nabla G(t,u), \quad &\text{a.e.}\quad t\in [0,T]\\ \Delta(\dot{u}^i(t_j))=\dot{u}^i(t_j^+)-\dot{u}^i(t_j^-)=I_{ij}(u^i(t_j)), & i=1,2,\dots, N, \;j=1,2,\dots, l,\\ u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0,\end{cases} \]
where \(A: [0,T]\to {\mathbb R}^{N\times N}\) is a continuous map from the interval \([0,T]\) to the set of \(N\)-order symmetric matrices, \(\lambda, \mu \in {\mathbb R}\), \(T\) is a real positive number, \(u(t) = (u^1(t), u^2(t),\dots , u^N (t))\), \(t_j, j = 1, 2, \dots , l\), are the instants where the impulses occur and \(0 = t_0 < t_1 < t_2 <\dots < t_l < t_{l+1} = T\), \(I_{ij} : {\mathbb R}\to {\mathbb R}\) \((i = 1,2\dots ,N,\) \(j = 1,2,\dots,l\)) are continuous and \(F, G:[0,T]\times {\mathbb R}^N\to {\mathbb R}\) are measurable with respect to \(t,\) for every \(u\in {\mathbb R}^N\), continuously differentiable in \(u,\) for almost every \(t\in [0, T ]\) and satisfy the following standard summability condition:
\[ \sup_{ |u|\leq b} (\max{|F (\cdot, u)|, |G(\cdot, u)|, |\nabla F (\cdot, u)|, |\nabla G(\cdot, u)|})\in L^1 ([0, T ]) \]
for all \(b > 0\). A variational method and some critical points theorems are used. Examples illustrating the main results are also presented.

MSC:

34B37 Boundary value problems with impulses for ordinary differential equations
37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
58E30 Variational principles in infinite-dimensional spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems (1989), Springer · Zbl 0676.58017
[2] Long, Y., Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials, Nonlinear Anal. TMA, 25, 1665-1671 (1995) · Zbl 0824.34042
[3] Tang, C., Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc., 126, 3263-3270 (1998) · Zbl 0902.34036
[4] Bonanno, G.; Livrea, R., Periodic solutions for a class of second-order Hamiltonian systems, Electron. J. Differential Equations, 115, 1-13 (2005) · Zbl 1096.34027
[5] Bonanno, G.; Livrea, R., Multiple periodic solutions for Hamiltonian systems with not coercive potential, J. Math. Anal. Appl., 363, 627-638 (2010) · Zbl 1192.37084
[6] Cordaro, G.; Rao, G., Three periodic solutions for perturbed second order Hamiltonian systems, J. Math. Anal. Appl., 359, 780-785 (2009) · Zbl 1185.34048
[7] Li, W.; Chang, Y.; Nieto, J. J., Solvability of impulsive neutral evolution differential inclusions with state-dependent delay, Math. Comput. Modelling, 49, 1920-1927 (2009) · Zbl 1171.34304
[8] Li, J.; Nieto, J. J., Existence of positive solutions for multipoint boundary value problem on the half-line with impulses, Bound. Value Probl., 2009 (2009), 12 pages, Article ID 834158 · Zbl 1177.34041
[9] Chu, J.; Nieto, J. J., Impulsive periodic solution of first-order singular differential equations, Bull. Lond. Math. Soc., 40, 143-150 (2008) · Zbl 1144.34016
[10] Ahmad, B.; Nieto, J. J., Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions, Nonlinear Anal. TMA, 69, 3291-3298 (2008) · Zbl 1158.34049
[11] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations (1989), World Scientific: World Scientific Singapore · Zbl 0719.34002
[12] Samoilenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations (1995), World Scientific: World Scientific Singapore · Zbl 0837.34003
[13] Yan, J.; Zhao, A.; Nieto, J. J., Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems, Math. Comput. Modelling, 40, 509-518 (2004) · Zbl 1112.34052
[14] Li, J.; Nieto, J. J.; Shen, J., Impulsive periodic boundary value problems of first-order differential equations, J. Math. Anal. Appl., 325, 226-299 (2007) · Zbl 1110.34019
[15] Nieto, J. J.; Rodriguez-Lopez, R., New comparison results for impulsive integro-differential equations and applications, J. Math. Anal. Appl., 328, 1343-1368 (2007) · Zbl 1113.45007
[16] Benchohra, M.; Henderson, J.; Ntouyas, S. K., Impulsive Differential Equations and Inclusions, vol. 2 (2006), Hindawi Publishing Corporation: Hindawi Publishing Corporation New York · Zbl 1130.34003
[17] Zavalishchin, S. T.; Sesekin, A. N., (Dynamic Impulse Systems: Theory and Applications. Dynamic Impulse Systems: Theory and Applications, Mathematics and its Applications, vol. 394 (1997), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht) · Zbl 0880.46031
[18] Zeng, G.; Wang, F.; Nieto, J. J., Complexity of a delayed predator-prey model with impulsive harvest and Holling-type II functional response, Adv. Complex Syst., 11, 77-97 (2008) · Zbl 1168.34052
[19] Zhang, H.; Chen, L.; Nieto, J. J., A delayed epidemic model with stage structure and pulses for management strategy, Nonlinear Anal. RWA, 9, 1714-1726 (2008) · Zbl 1154.34394
[20] Nieto, J. J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear Anal. RWA, 10, 680-690 (2009) · Zbl 1167.34318
[21] Tian, Y.; Ge, W., Applications of variational methods to boundary-value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 51, 509-527 (2008) · Zbl 1163.34015
[22] Sun, J.; Chen, H., Variational method to the impulsive equation with Neumann boundary conditions, Bound. Value Probl., 2009 (2009), 17 pages, Article ID 316812 · Zbl 1184.34039
[23] Zhang, L.; Ge, W., Solvability of a kind of Sturm-Liouville boundary value problems with impulses via variational methods, Acta Appl. Math. (2009)
[24] Zhou, J.; Li, Y., Existence of solutions for a class of second order Hamiltonian systems with impulsive effects, Nonlinear Anal. TMA, 72, 1594-1603 (2010) · Zbl 1193.34057
[25] Ricceri, B., A further three critical points theorem, Nonlinear Anal. TMA, 71, 4151-4157 (2009) · Zbl 1187.47057
[26] Ricceri, B., A three critical points theorem revisited, Nonlinear Anal. TMA, 70, 3084-3089 (2009) · Zbl 1214.47079
[27] Ricceri, B., Existence of three solutions for a class of elliptic eigenvalue problem, Math. Comput. Modelling, 32, 1485-1494 (2000) · Zbl 0970.35089
[28] Zeidler, E., Nonlinear Functional Analysis and its Applications, vol. 2 (1990), Springer: Springer Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.