×

The moving boundary node method: A level set-based, finite volume algorithm with applications to cell motility. (English) Zbl 1195.92006

Summary: Eukaryotic cell crawling is a highly complex biophysical and biochemical process, where deformation and motion of a cell are driven by internal, biochemical regulation of a poroelastic cytoskeleton. One challenge to built quantitative models that describe crawling cells is solving the reaction-diffusion-advection dynamics for the biochemical and cytoskeletal components of the cell inside its moving and deforming geometry. We develop an algorithm that uses the level set method to move the cell boundary and uses information stored in the distance map to construct a finite volume representation of the cell. Our method preserves Cartesian connectivity of the nodes in the finite volume representation while resolving the distorted cell geometry. Derivatives approximated using a Taylor series expansion at finite volume interfaces lead to second order accuracy even on highly distorted quadrilateral elements. A modified, Laplacian-based interpolation scheme is developed that conserves mass while interpolating values onto nodes that join the cell interior as the boundary moves. An implicit time stepping algorithm is used to maintain stability. We use the algorithm to simulate two simple models for cellular crawling. The first model uses depolymerization of the cytoskeleton to drive cell motility and suggests that the shape of a steady crawling cell is strongly dependent on the adhesion between the cell and the substrate. In the second model, we use a model for chemical signalling during chemotaxis to determine the shape of a crawling cell in a constant gradient and to show cellular response upon gradient reversal.

MSC:

92C17 Cell movement (chemotaxis, etc.)
92C40 Biochemistry, molecular biology
35R37 Moving boundary problems for PDEs
92C37 Cell biology
92C05 Biophysics
35K57 Reaction-diffusion equations
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Gupta, S. C., The Classical Stefan Problem: Basic Concepts, Modeling and Analysis (2003), Elsevier Science: Elsevier Science Amsterdam · Zbl 1064.80001
[2] Chen, S.; Merriman, B.; Osher, S.; Smereka, P., A simple level set method for solving Stefan problems, J. Comput. Phys., 135, 8-29 (1997) · Zbl 0889.65133
[3] Sethian, J. A.; Strain, J. D., Crystal growth and dendritic solidification, J. Comput. Phys., 98, 231-253 (1992) · Zbl 0752.65088
[4] Gibou, F.; Fedkiw, R., A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem, J. Comput. Phys., 202, 577-601 (2005) · Zbl 1061.65079
[5] Karma, A.; Rappel, W.-J., Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57, 4323-4349 (1997) · Zbl 1086.82558
[6] Lauffenburger, D. A.; Horwitz, A. F., Cell migration: a physically integrated molecular process, Cell, 84, 359-369 (1996)
[7] Mitchison, T. J.; Cramer, L. P., Actin-based cell motility and cell locomotion, Cell, 84, 371-379 (1996)
[8] Rohatgi, R.; Nollau, P.; Ho, H.-Y. H.; Kirschner, M. W.; Mayer, B. J., Nck and phosphatidylinositol 4,5-biphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway, J. Biol. Chem., 276, 26448-26452 (2001)
[9] Le Clainche, C.; Pantaloni, D.; Carlier, M.-F., ATP hydrolysis on actin-related protein 2/3 complex causes debranching of dendritic actin arrays, Proc. Nat. Acad. Sci. USA, 100, 6337-6342 (2003)
[10] Mogilner, A.; Oster, G., Force generation by actin polymerization II: the elastic ratchet and tethered filaments, Biophys. J., 84, 1591-1605 (2003)
[11] Pollard, T. D.; Blanchoin, L.; Mullins, R. D., Molecular mechanisms controlling actin filament dynamics in nonmuscle cells, Annu. Rev. Biophys. Biomol. Struct., 29, 545-576 (2000)
[12] Vicente-Manzanares, M.; Zareno, J.; Whitmore, L.; Choi, C. K.; Horwitz, A. F., Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells, J. Cell Biol., 176, 573-580 (2007)
[13] Huxley, H. E., Muscular contraction and cell motility, Nature, 243, 445-449 (1973)
[14] Miao, L.; Vanderlinde, O.; Stewert, M.; Roberts, T. M., Retraction in amoeboid cell motility powered by cytoskeletal dynamics, Science, 302, 1405-1407 (2003)
[15] Zajac, M.; Dacanay, B.; Mohler, W. A.; Wolgemuth, C. W., Depolymerization-driven flow in nematode spermatozoa relates crawling speed to size and shape, Biophys. J., 94, 3810-3823 (2008)
[16] Mogilner, A.; Edelstein-Keshet, L., Regulation of actin dynamics in rapidly moving cells: a quantitative analysis, Biophys. J., 83, 1237-1258 (2002)
[17] Dawes, A. T.; Edelstein-Keshet, L., Phosphoinositides and Rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell, Biophys. J., 92, 744-768 (2007)
[18] Joanny, J.-F.; Julicher, F.; Prost, J., Motion of an adhesive gel in a swelling gradient: a mechanism for cell locomotion, Phys. Rev. Lett., 90, 168102 (2003)
[19] W. Strychalski, Simulation Methods for Spatiotemporal Models of Biochemical Signaling Networks, Ph.D. Thesis, University of North Carolina, Chapel Hill, 2009.; W. Strychalski, Simulation Methods for Spatiotemporal Models of Biochemical Signaling Networks, Ph.D. Thesis, University of North Carolina, Chapel Hill, 2009.
[20] Bottino, D.; Mogilner, A.; Roberts, T.; Stewert, M.; Oster, G., How nematode sperm crawl, J. Cell Sci., 115, 367-384 (2002)
[21] Herant, M.; Marganski, W. A.; Dembo, M., The mechanics of neutrophils: synthetic modeling of three experiments, Biophys. J., 84, 3389-3413 (2003)
[22] Rubinstein, B.; Jacobson, K.; Mogilner, A., Multiscale two-dimensional modeling of a motile simple-shaped cell, Multiscale Model. Simul., 3, 413-439 (2005) · Zbl 1068.92005
[23] Maree, A. F.M.; Jilkine, A.; Dawes, A.; Grieneisen, V. A.; Edelstein-Keshet, L., Polarization and movement of keratocytes: a multiscale modeling approach, Bull. Math. Biol., 68, 1169-1211 (2006) · Zbl 1334.92062
[24] Peskin, C. S., The immersed boundary method, Acta Numerica, 11, 479-517 (2002) · Zbl 1123.74309
[25] Osher, S.; Sethian, J., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[26] Sethian, J. A., Tracking interfaces with level sets, Am. Sci., 85 (1997)
[27] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science (1999), Cambridge University Press: Cambridge University Press New York, NY · Zbl 0973.76003
[28] Osher, S.; Fedikiw, R., Level Set Methods and Dynamic Implicit Surfaces (2000), Springer-Verlag: Springer-Verlag New York, NY
[29] Adalsteinsson, D.; Sethian, J. A., The fast construction of extension velocities in level set methods, J. Comput. Phys., 148, 2-22 (1999) · Zbl 0919.65074
[30] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[31] Macklin, P.; Lowengrub, J., Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth, J. Comput. Phys., 203, 191-220 (2005) · Zbl 1067.65111
[32] Chung, T. J., Computational Fluid Dynamics (2002), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1037.76001
[33] Zwart, P. J.; Raithby, G. D.; Raw, ad M. J., The integrated space-time finite volume method and its application to moving boundary problems, J. Comput. Phys., 154, 497-519 (1999) · Zbl 0952.76049
[34] Oosterom, T.; Oosterom, A.; Huiskamp, G., Interpolation on a triangulated 3D surface, J. Comput. Phys., 80, 331-343 (1989) · Zbl 0675.65006
[35] Keren, K.; Yam, P. T.; Kinkhabwala, A.; Mogilner, A.; Theriot, J. A., Intracellular fluid flow in rapidly moving cells, Nat. Cell Biol., 11, 1219-1224 (2009)
[36] Novak, I. L.; Gao, F.; Choi, Y.; Resasco, D.; Schaff, J. C.; Slepchenko, B. M., Diffusion on a curved surface coupled to diffusion in the volume: application to cell biology, J. Comput. Phys., 226, 1271-1290 (2007) · Zbl 1121.92026
[37] Machacek, M.; Danuser, G., Morphodynamic profiling of protrusion phenotypes, Biophys. J., 90, 1439-1452 (2006)
[38] Schwartz, P.; Adalsteinsson, D.; Colella, P.; Arkin, A. P.; Onsum, M., Numerical computation of diffusion on a surface, Proc. Nat. Acad. Sci. USA, 102, 11151-11156 (2005)
[39] Yang, L.; Effler, J. C.; Kutscher, B. L.; Sullivan, S. E.; Robinson, D. N.; Iglesias, P. A., Modeling cellular deformations using the level set formalism, BMC Syst. Biol., 2, 95 (2008)
[40] Astanin, S.; Preziosi, L., Mathematical modeling of the Warburg effect in tumour cords, J. Theor. Biol., 258, 578-590 (2009) · Zbl 1402.92145
[41] Thompson, J., Numerical Grid Generation: Foundations and Applications (1985), Elsevier: Elsevier New York, NY · Zbl 0598.65086
[42] Ji, H.; Lien, F.-S.; Yee, E., An efficient second-order accurate cut-cell method for solving the variable coefficient Poisson equation with jump conditions on irregular domains, Int. J. Numer. Meth. Fluids, 52, 723-748 (2006) · Zbl 1108.65112
[43] Tang, H. Z.; Tang, T., Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal., 41, 487-515 (2003) · Zbl 1052.65079
[44] Adalsteinsson, D.; Sethian, J. A., Transport and diffusion of material quantities on propagating interfaces via level set methods, J. Comput. Phys., 185, 271-288 (2003) · Zbl 1047.76093
[45] Johansen, H.; Colella, P., A cartesian grid embedded boundary method for Poisson’s equation on irregular domains, J. Comput. Phys., 147, 60-85 (1998) · Zbl 0923.65079
[46] Roberts, T. M.; Stewert, M., Nematode sperm amoeboid movement without actin, Trends Cell Biol., 7, 368-373 (1997)
[47] Wolgemuth, C. W.; Miao, L.; Vanderlinde, O.; Roberts, T.; Oster, G., MSP dynamics drives nematode sperm locomotion, Biophys. J., 88, 2462-2471 (2005)
[48] M. Goegler, J.A. Käs, A. Ehrlicher, D. Kock, C.W. Wolgemuth, C. Brunner, The origin and spatial distribution of forces in motile cells, PLoS Biology, submitted for publication.; M. Goegler, J.A. Käs, A. Ehrlicher, D. Kock, C.W. Wolgemuth, C. Brunner, The origin and spatial distribution of forces in motile cells, PLoS Biology, submitted for publication.
[49] Grimm, H. P.; Verkhovsky, A.; Mogilner, A.; Meister, J.-J., Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia, Eur. Biophys. J., 32, 563-577 (2003)
[50] Keren, K.; Pincus, Z.; Allen, G. M.; Barnhart, E. L.; Marriott, G.; Mogilner, A.; Theriot, J. A., Mechanism of shape-determination in motile cells, Nature, 453, 475-480 (2008)
[51] Wolgemuth, C. W., Lamellipodial contractions during crawling and spreading, Biophys. J., 89, 1643-1649 (2005)
[52] Svitkina, T. M.; Verkhovsky, A. B.; McQuade, K. M.; Borisy, G. G., Analysis of actin-myosin II system in fish epidermal keratocytes: mechanism of cell body translocation, J. Cell Biol., 139, 397-415 (1997)
[53] Zigmond, S. H., Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors, J. Cell Biol., 75, 606-616 (1977)
[54] Song, L.; Nadkarni, S. M.; Bödeker, H. U.; Beta, C.; Bae, A.; Franck, C.; Rappel, W.-J.; Loomis, W. F.; Bodenschatz, E., Dictyostelium discoideum chemotaxis: threshold for directed motion, Eur. J. Cell Biol., 85, 981-989 (2006)
[55] Levine, H.; Kessler, D. A.; Rappel, W.-J., Directional sensing in eukaryotic chemotaxis: a balanced inactivation model, Proc. Nat. Acad. Sci. USA, 103, 9761-9766 (2006)
[56] Lacayo, C. I.; Pincus, Z.; VanDujin, M. M.; Wilson, C. A.; Fletcher, D. A.; Gertler, F. B.; Mogilner, A.; Theriot, J. A., Emergence of large-scale cell morphology and movement from local actin filament growth dynamics, PLos Biol., 5, e233 (2007)
[57] Ligocki, T. J.; Schwartz, P. O.; Percelay, J.; Colella, P., Embedded boundary grid generation using the divergence theorem, implicit functions, and constructive solid geometry, J. Phys. Conf. Ser., 125, 012080 (2008)
[58] Macklin, P.; Lowengrub, J., A new ghost cell level set method for moving boundary problems: application to tumor growth, J. Sci. Comput., 35, 266-299 (2008) · Zbl 1203.65144
[59] McCorquodale, P.; Colella, P.; Johansen, H., A Cartesian grid embedded boundary method for the heat equation on irregular domains, J. Comput. Phys., 173, 620-635 (2001) · Zbl 0991.65099
[60] Strychalski, W.; Adalsteinsson, D.; Elston, T. C., A cut cell method for simulating spatial models of biochemical reaction networks in arbitrary geometries, Commun. Appl. Math. Comput. Sci., 5, 31-53 (2010) · Zbl 1186.92022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.