×

A new mutation operator for real coded genetic algorithms. (English) Zbl 1193.68209

Summary: In this paper, a new mutation operator called power mutation (PM) is introduced for real coded genetic algorithms (RCGA). The performance of PM is compared with two other existing real coded mutation operators taken from literature namely: non-uniform mutation (NUM) and Makinen, Periaux and Toivanen mutation (MPTM). Using the various combinations of two crossovers [K. Deep and M. Thakur, Appl. Math. Comput. 188, No. 1, 895–911 (2007; Zbl 1137.90726)] and Heuristic crossover [Z. Michalewicz, Genetic algorithms + data structures = evolution programs (1992; Zbl 0763.68054); A. H. Wright, Genetic algorithms for real parameter optimization, in: Foundations of genetic algorithms. Hove, East Sussex: Morgan Kaufmann. 205–218 (1992; Zbl 0817.68119)] and three mutation operators (the newly defined mutation in this paper, PM, NUM and MPTM) six generational real coded GAs are compared on a set of 20 benchmark global optimization test problems. Various performance criterion are used to judge the efficiency, accuracy and reliability of all the RCGAs. The results show that the RCGA using the proposed power mutation, when used in conjunction with the earlier defined Laplace crossover, outperforms all other GAs considered in this study.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
90C59 Approximation methods and heuristics in mathematical programming

Software:

Genocop
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Back, T.; Schwefel, H.-P., An overview of evolutionary algorithms for parameter optimization, Evolutionary Computation, 1, 1, 1-23 (1993)
[2] K.A. De-Jong, An analysis of the behavior of a class of genetic adaptive systems. Doctoral Dissertation, University of Michigan, 1975.; K.A. De-Jong, An analysis of the behavior of a class of genetic adaptive systems. Doctoral Dissertation, University of Michigan, 1975.
[3] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning (1989), Addison-Wesley: Addison-Wesley New York · Zbl 0721.68056
[4] Goldberg, D. E., Real-coded genetic algorithms, virtual alphabets, and blocking, Complex Systems, 5, 2, 139-168 (1991) · Zbl 0764.68143
[5] Janikow, C. Z.; Michalewicz, Z., An experimental comparison of binary and floating point representation in genetic algorithms, (Proceedings of the Fourth International Conference on Genetic Algorithms (1991), Morgan Kaufmann: Morgan Kaufmann San Francisco), 31-36
[6] Ono, I.; Kobayashi, S., A real-coded genetic algorithm for function optimization using unimodal normal distribution crossover, (Back, T., Proceedings of the Seventh International Conference on Genetic Algorithms (1997), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 246-253
[7] S. Tsutsui, M. Yamamura, T. Higuchi, Multi-parent recombination with simplex crossover in real-coded genetic algorithms, in: W. Banzhaf, J. Daida, A. Eiben, M. Garzon, V. Honavar, M. Jakiela, R. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1 1999), 1999, pp. 657-664.; S. Tsutsui, M. Yamamura, T. Higuchi, Multi-parent recombination with simplex crossover in real-coded genetic algorithms, in: W. Banzhaf, J. Daida, A. Eiben, M. Garzon, V. Honavar, M. Jakiela, R. Smith (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-1 1999), 1999, pp. 657-664.
[8] H. Kita, I. Ono, S. Kobayashi, The multi-parent unimodal normal distribution crossover for real-coded genetic algorithms, in: Proceedings of the 1999 Congress on Evolutionary Computation, IEEE, vol. 2, 1999, pp. 1588-1595.; H. Kita, I. Ono, S. Kobayashi, The multi-parent unimodal normal distribution crossover for real-coded genetic algorithms, in: Proceedings of the 1999 Congress on Evolutionary Computation, IEEE, vol. 2, 1999, pp. 1588-1595.
[9] Deb, K.; Anand, A.; Joshi, D., A computationally efficient evolutionary algorithm for real-parameter evolution, Evolutionary Computation Journal, 10, 4, 371-395 (2002)
[10] A. Sinha, S. Tiwari, K. Deb, A population based steady state procedure for real parameter optimization. KANGAL Technical Report no. 2005004, 2005.; A. Sinha, S. Tiwari, K. Deb, A population based steady state procedure for real parameter optimization. KANGAL Technical Report no. 2005004, 2005.
[11] Michalewicz, Z., Genetic Algorithms+Data Structures=Evolution Programs (1992), Springer-Verlag: Springer-Verlag New York · Zbl 0763.68054
[12] Eshelman, L. J.; Schaffer, J. D., Real-coded genetic algorithms and interval schemata, (Whitley, D. L., Foundation of Genetic Algorithms II (1993), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 187-202
[13] Radcliffe, N. J., Equivalence class analysis of genetic algorithms, Complex Systems, 2, 5, 183-205 (1991) · Zbl 0745.92015
[14] Muhlebein, H.; Schlierkamp-Voosen, D., Predictive models for breeder genetic algorithms in continuous parameter optimization, Evolutionary Computation, 1, 1, 25-49 (1993)
[15] Voigt, H. M.; Muhlenbein, H.; Cvetkovic, D., Fuzzy recombination for the breeder genetic algorithms, (Eshelmen, L. J., Proceedings of the Sixth International Conference on Genetic Algorithms (1995), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 104-111
[16] Wright, A. H., Genetic algorithms for real parameter optimization, (Rawlins, G. J.E., Foundations of Genetic Algorithms I (1991), Morgan Kaufmann: Morgan Kaufmann San Mateo), 205-218
[17] F. Herrera, M Lozano, Adaptation of genetic algorithm parameters based on fuzzy logic controllers, in: Genetic Algorithms and Soft Computing, 1996.; F. Herrera, M Lozano, Adaptation of genetic algorithm parameters based on fuzzy logic controllers, in: Genetic Algorithms and Soft Computing, 1996.
[18] Herrera, F.; Lozano, M.; Verdegay, J. L., Dynamic and heuristic fuzzy connectives based crossover operators for controlling the diversity and convergence of real-coded genetic algorithms, International Journal Intelligent System, 2, 1013-1041 (1999) · Zbl 0869.68052
[19] Deb, K.; Agrawal, R. B., Simulated binary crossover for continuous search space, Complex Systems, 9, 115-148 (1995) · Zbl 0843.68023
[20] Ling, S. H.; Leung, F. H.F., An improved genetic algorithm with average-bound crossover and wavelet mutation operations, Soft Computing, 11, 7-31 (2007) · Zbl 1141.90584
[21] Kusum Deep, Manoj Thakur, A new crossover operator for real coded genetic algorithms, Applied Mathematics and Computations, accepted for publication, doi:10.1016/j.amc.2006.10.047.; Kusum Deep, Manoj Thakur, A new crossover operator for real coded genetic algorithms, Applied Mathematics and Computations, accepted for publication, doi:10.1016/j.amc.2006.10.047. · Zbl 1137.90726
[22] Makinen, R. A.E.; Periaux, J.; Toivanen, J., Multidisciplinary shape optimization in aerodynamics and electromagnetic using genetic algorithms, International Journal for Numerical Methods in Fluids, 30, 2, 149-159 (1999) · Zbl 0929.76105
[23] Spears, W. M., Crossover or mutation?, (Whitley, L. D., Foundations of Genetic Algorithms 2 (1993), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 221-238
[24] Herrera, F.; Lozano, M., Two-Loop real coded genetic algorithms with adaptive control of mutation step sizes, Applied Intelligence, 13, 187-204 (2002)
[25] Smith, J. E.; Fogarty, T. C., Operators and parameter adaptation in genetic algorithms, Soft computing, 1, 2, 81-87 (1997)
[26] Krasnogor, N.; Smith, J. E., Emergence of profitable search strategies based on a simple inheritance mechanism, (Proceedings of the International Conference on Genetic and Evolutionary Computations (2001), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 432-439
[27] J.E. Smith, Modelling GAs with self adapting mutation rates, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2001.; J.E. Smith, Modelling GAs with self adapting mutation rates, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2001.
[28] Michalewicz, Z.; Schoenauer, M., Evolutionary algorithms for constrained parameter optimization problems, Evolutionary Computation, 4, 1, 1-32 (1996)
[29] Muhelenbein, H.; Schlierkamp-Voosen, D., Predictive models for the breeder genetic algorithm 1, continuous parameter optimization, Evolutionary Computations, 1, 25-49 (1993)
[30] H.M. Voigt, T. Anheyer, Modal mutations in evolutionary algorithms 1994, in: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994, pp. 88-92.; H.M. Voigt, T. Anheyer, Modal mutations in evolutionary algorithms 1994, in: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994, pp. 88-92.
[31] Hinterding, R., Gaussian mutation and self-adaption in numeric genetic algorithms, (Proceedings of Second IEEE Conference Evolutionary Computation (1995), IEEE Press: IEEE Press Piscataway, NJ), 384-389
[32] Hinterding, R.; Michalewicz, Z.; Peachey, T. C., Self-adaptive genetic algorithm for numeric functions, (Voigt, H.-M.; Ebeling, W.; Rechenberg, I.; Schwefel, H.-P., Proceedings of the Fourth Conference on Parallel Problem Solving from Nature. Proceedings of the Fourth Conference on Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 1141 (1996), Springer: Springer Berlin, Germany), 420-429
[33] A. Berry, P. Vamplew, PoD can mutate: a simple dynamic directed mutation approach for genetic algorithms, in: Proceedings of AISAT2004: International Conference on Artificial Intelligence in Science and Technology, Hobart, Tasmania, 2004.; A. Berry, P. Vamplew, PoD can mutate: a simple dynamic directed mutation approach for genetic algorithms, in: Proceedings of AISAT2004: International Conference on Artificial Intelligence in Science and Technology, Hobart, Tasmania, 2004.
[34] Temby, L.; Vamplew, P.; Berry, A., Accelerating Real-Valued Genetic Algorithms Using Mutation-with-Momentum. Accelerating Real-Valued Genetic Algorithms Using Mutation-with-Momentum, Lecture Notes in Computer Science, 3809 (2005), Springer-Verlag, pp. 1108-1111
[35] Munteanu, C.; Lazarescu, C., Improving mutation capabilities in a real-coded GA, (Proceedings of GoIASP’99. Proceedings of GoIASP’99, Lecture Notes in Computer Science, 1596 (1999), Springer-Verlag), 138-148
[36] Deb, K., Muiti-objective Optimization Using Evolutionary Algorithms (2001), Wiley: Wiley Chichester
[37] Michalewicz, Z.; Logan, T.; Swaminathan, S., Evolutionary operators for continuous convex parameter space, (Sebald, A. V.; Fogel, L. J., Proceeding of Third Annual Conference on Evolutionary Programming (1994), World Scientific: World Scientific River Edge, NJ), 84-97
[38] Michalewicz, Z., Genetic algorithms, numerical optimization and constraints, (Eshelmen, L. J., Proceedings of the Sixth International Conference on Genetic Algorithms (1995), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 151-158
[39] Michalewicz, Z.; Dasgupta, D.; Le Riche, R. G.; Schoenauer, M., Evolutionary algorithms for constrained engineering problems, Computers & Industrial Engineering Journal, 30, 4, 851-870 (1996)
[40] Meittinen, K.; Makela, M. M.; Toivanen, J., Numerical comparison of some penalty based constraint handling techniques in genetic algorithms, Journal of Global Optimization, 27, 427-446 (2003) · Zbl 1046.90106
[41] Maaranen, H.; Meittinen, K.; Makela, M. M., Quasi random initial population for genetic algorithms, Computer and Mathematics with Applications, 47, 1885-1895 (2004) · Zbl 1074.90036
[42] Bharti, Controlled random search technique and their applications. Ph.D. Thesis. Department of Mathematics, University of Roorkee, Roorkee, India, 1994.; Bharti, Controlled random search technique and their applications. Ph.D. Thesis. Department of Mathematics, University of Roorkee, Roorkee, India, 1994.
[43] Mohan, C.; Nguyen, H. T., A controlled random search technique incorporating the simulating annealing concept for solving integer and mixed integer global optimization problems, Computational Optimization and Applications, 14, 103-132 (1999) · Zbl 0970.90053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.