×

Stability of cubic and quartic functional equations in non-Archimedean spaces. (English) Zbl 1192.39018

Using some ideas of M. S. Moslehian and Th. M. Rassias [Appl. Anal. Discrete Math. 1, No. 2, 325–334 (2007; Zbl 1257.39019)], K. W. Jun and H. M. Kim [J. Math. Anal. Appl. 274, No. 2, 867–878 (2002; Zbl 1021.39014)] and W. G. Park and J. H. Bae [Nonlinear Anal., Theory Methods Appl. 62, No. 4 (A), 643–654 (2005; Zbl 1076.39027)], the authors investigate the generalized Hyers-Ulam-Rassias stability of the cubic functional equation
\[ f(kx+y)+f(kx-y)=k[f(x+y)+f(x-y)]+2(k^3-k)f(x), \]
and the quartic functional equation \[ f(kx+y)+f(kx-y)=k^2[f(x+y)+f(x-y)]+2k^2(k^2-1)f(x)-2(k^2-1)f(y) \] for all \(k\in \mathbb N\), where \(f:G\to X\) is a mapping, \(G\) is an additive group and \(X\) is a complete non-Archimedean space.

MSC:

39B82 Stability, separation, extension, and related topics for functional equations
46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
39B52 Functional equations for functions with more general domains and/or ranges
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arriola, L.M., Beyer, W.A.: Stability of the Cauchy functional equation over p-adic fields. Real Anal. Exch. 31, 125–132 (2005/2006) · Zbl 1099.39019
[2] Borelli, C., Forti, G.L.: On a general Hyers–Ulam stability result. Int. J. Math. Math. Sci. 18, 229–236 (1995) · Zbl 0826.39009 · doi:10.1155/S0161171295000287
[3] Cholewa, P.W.: Remarks on the stability of functional equations. Aequ. Math. 27, 76–86 (1984) · Zbl 0549.39006 · doi:10.1007/BF02192660
[4] Czerwik, S.: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hambg. 62, 59–64 (1992) · Zbl 0779.39003 · doi:10.1007/BF02941618
[5] Eshaghi Gordji, M.: Stability of a functional equation deriving from quartic and additive functions. Bull. Korean Math. Soc. (to appear) · Zbl 1196.39016
[6] Eshaghi Gordji, M., Park, C., Savadkouhi, M.B.: Stability of a quartic type functional equation. Fixed Point Theory (to appear) · Zbl 1208.39036
[7] Eshaghi Gordji, M., Ebadian, A., Zolfaghari, S.: Stability of a functional equation deriving from cubic and quartic functions. Abstr. Appl. Anal. 2008 (2008), Article ID 801904, 17 pages · Zbl 1160.39334
[8] Gajda, Z.: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431–434 (1991) · Zbl 0739.39013 · doi:10.1155/S016117129100056X
[9] Gǎvruta, P.: A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431–436 (1994) · Zbl 0818.46043 · doi:10.1006/jmaa.1994.1211
[10] Gouvêa, F.Q.: p-adic Numbers. Springer, Berlin (1997)
[11] Grabiec, A.: The generalized Hyers–Ulam stability of a class of functional equations. Publ. Math. Debr. 48, 217–235 (1996) · Zbl 1274.39058
[12] Hensel, K.: Über eine neue Begründung der Theorie der algebraischen Zahlen. Jahresber. Dtsch. Math. Ver. 6, 83–88 (1897) · JFM 30.0096.03
[13] Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[14] Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998) · Zbl 0907.39025
[15] Jung, S.M.: Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press Inc., Palm Harbor (2001) · Zbl 0980.39024
[16] Jung, K.W., Kim, H.M.: The generalized Hyers–Ulam–Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 274(2), 267–278 (2002) · Zbl 1012.39025 · doi:10.1016/S0022-247X(02)00328-1
[17] Khrennikov, A.: Non-Archimedean Analysis, Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer Academic Publishers, Dordrecht (1997) · Zbl 0920.11087
[18] Moslehian, M.S., Rassias, Th.M.: Stability of functional equations in non-Archimedean spaces. Appl. Anal. Discrete Math. 1, 325–334 (2007) · Zbl 1257.39019 · doi:10.2298/AADM0702325M
[19] Najati, A.: On the stability of a quartic functional equation. J. Math. Anal. Appl. 340(1), 569–574 (2008) · Zbl 1133.39030 · doi:10.1016/j.jmaa.2007.08.048
[20] Park, C.: On the stability of the quadratic mapping in Banach modules. J. Math. Anal. Appl. 276, 135–144 (2002) · Zbl 1017.39010 · doi:10.1016/S0022-247X(02)00387-6
[21] Park, C.: Generalized quadratic mappings in several variables. Nonlinear Anal. 57, 713–722 (2004) · Zbl 1058.39024 · doi:10.1016/j.na.2004.03.013
[22] Park, W.G., Bae, J.H.: On the stability a bi-quartic functional equation. Nonlinear Anal. 62(4), 643–654 (2005) · Zbl 1076.39027 · doi:10.1016/j.na.2005.03.075
[23] Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[24] Rassias, Th.M.: On the stability of the quadratic functional equation and its applications. Stud. Univ. Babes-Bolyai 43, 89–124 (1998) · Zbl 1009.39025
[25] Rassias, T.M. (ed.): Functional Equations and Inequalities. Kluwer Academic Publishers, Dordrecht (2000) · Zbl 0945.00010
[26] Robert, A.M.: A Course in p-adic Analysis. Springer, New York (2000) · Zbl 0947.11035
[27] Skof, F.: Proprietá localie approssimazione dioperatori. Rend. Sem. Mat. Fis. Milano 53, 113–129 (1983) · Zbl 0599.39007 · doi:10.1007/BF02924890
[28] Ulam, S.M.: A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics. Interscience, New York (1960) · Zbl 0086.24101
[29] Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-adic Analysis and Mathematical Physics. World Scientific, Singapore (1994) · Zbl 0812.46076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.