×

Thermal radiation effects on heat and mass transfer over an unsteady stretching surface. (English) Zbl 1191.80029

Summary: The unsteady heat, mass, and fluid transfer over a horizontal stretching sheet has been numerically investigated. Using a similarity transformation the governing time-dependent boundary layer equations for the momentum, heat, and mass transfer were reduced to a sets of ordinary differential equations. These set of ordinary differential equations were then solved using the Chebyshev pseudo-spectral collocation method, and a parametric analysis was carried out. The study observed, among other observations that the local Sherwood number increases as the values of the stretching parameter \(A\) and the Schmidt number \(Sc\) increase. Also the fluid temperature was found to be significantly reduced by increases in the values of the Prandtl number \(Pr\), the unsteadiness parameter \(A\), and the radiation parameter \(R\). The velocity and concentration profiles were found to be reduced by increasing values of the unsteadiness parameter \(A\).

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] L. J. Crane, “Flow past a stretching plate,” Zeitschrift für angewandte Mathematik und Physik, vol. 12, pp. 645-647, 1970.
[2] M. K. Laha, P. S. Gupta, and A. S. Gupta, “Heat transfer characteristics of the flow of an incompressible viscous fluid over a stretching sheet,” Warme und Stoffubertrag, vol. 24, no. 3, pp. 151-153, 1989. · doi:10.1007/BF01590013
[3] N. Afzal, “Heat transfer from a stretching surface,” International Journal of Heat and Mass Transfer, vol. 36, no. 4, pp. 1128-1131, 1993. · Zbl 0764.76011 · doi:10.1016/S0017-9310(05)80296-0
[4] K. V. Prasad, A. S. Abel, and P. S. Datti, “Diffusion of chemically reactive species of non-Newtonian fluid immersed in a porous medium over a stretching sheet,” The International Journal of Non-Linear Mechanics, vol. 38, no. 5, pp. 651-657, 2003. · Zbl 1312.76005 · doi:10.1016/S0020-7462(01)00122-6
[5] M. S. Abel and N. Mahesha, “Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation,” Applied Mathematical Modelling, vol. 32, no. 10, pp. 1965-1983, 2008. · Zbl 1145.76469 · doi:10.1016/j.apm.2007.06.038
[6] P. G. Abel, Siddheshwar, and M. M. Nandeppanava, “Heat transfer in a viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and non-uniform heat source,” International Journal of Heat and Mass Transfer, vol. 50, no. 5-6, pp. 960-966, 2007. · Zbl 1124.80300 · doi:10.1016/j.ijheatmasstransfer.2006.08.010
[7] R. Cortell, “Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a non-uniform heat source, viscous dissipation and thermal radiation,” International Journal of Heat and Mass Transfer, vol. 50, no. 15-16, pp. 3152-3162, 2007. · Zbl 1119.80306 · doi:10.1016/j.ijheatmasstransfer.2007.01.003
[8] C. Wang, “Analytic solutions for a liquid film on an unsteady stretching surface,” Heat and Mass Transfer, vol. 42, pp. 43-48, 2006.
[9] M. A. Hossain, M. A. Alim, and D. A. S. Rees, “The effect of radiation on free convection from a porous vertical plate,” International Journal of Heat and Mass Transfer, vol. 42, no. 1, pp. 181-191, 1999. · Zbl 0953.76083 · doi:10.1016/S0017-9310(98)00097-0
[10] H. I. Andersson, J. B. Aarseth, N. Braud, and B. S. Dandapat, “Flow of a power-law fluid film on an unsteady stretching surface,” Journal of Non-Newtonian Fluid Mechanics, vol. 62, no. 1, pp. 1-8, 1996. · doi:10.1016/0377-0257(95)01392-X
[11] H. I. Andersson, J. B. Aarseth, and B. S. Dandapat, “Heat transfer in a liquid film on unsteady stretching surface,” International Journal of Heat and Mass Transfer, vol. 43, no. 1, pp. 69-74, 2000. · Zbl 1042.76507 · doi:10.1016/S0017-9310(99)00123-4
[12] B. S. Dandapat, B. Santra, and H. I. Andersson, “Thermocapillary in a liquid film on an unsteady stretching surface,” International Journal of Heat and Mass Transfer, vol. 46, pp. 3009-3015, 2003. · Zbl 1048.76502 · doi:10.1016/S0017-9310(03)00078-4
[13] R. Tsai, K. H. Huang, and J. S. Huang, “Flow and heat transfer over an unsteady stretching surface with non-uniform heat source,” International Communications in Heat and Mass Transfer, vol. 35, no. 10, pp. 1340-1343, 2008. · doi:10.1016/j.icheatmasstransfer.2008.07.001
[14] I.-C. Liu and H. I. Andersson, “Heat transfer in a liquid film on an unsteady stretching sheet,” International Journal of Thermal Sciences, vol. 47, no. 6, pp. 766-772, 2008. · doi:10.1016/j.ijthermalsci.2007.06.001
[15] E. M. A. Elbashbeshy and M. A. A. Bazid, “Heat transfer over an unsteady stretching surface with internal heat generation,” Applied Mathematics and Computation, vol. 138, no. 2-3, pp. 239-245, 2003. · Zbl 1056.76026 · doi:10.1016/S0096-3003(02)00106-6
[16] M. Abd El-Aziz, “Radiation effect on the flow and heat transfer over an unsteady stretching sheet,” International Communications in Heat and Mass Transfer, vol. 36, no. 5, pp. 521-524, 2009. · doi:10.1016/j.icheatmasstransfer.2009.01.016
[17] A. Raptis, “Flow of a micropolar fluid past a continuously moving plate by the presence of radiation,” International Journal of Heat and Mass Transfer, vol. 41, no. 18, pp. 2865-2866, 1998. · Zbl 0922.76050 · doi:10.1016/S0017-9310(98)00006-4
[18] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. Zang, Spectral Method in Fluid Dynamics, Springer, New York, NY, USA, 1998. · Zbl 0717.76004
[19] S. Hussain and M. A. Hossain, “Natural convection flow from a vertical permeable flat plate with variable surface temperature and species concentration,” Engineering Computations, vol. 17, no. 7, pp. 789-813, 2000. · Zbl 0982.76082 · doi:10.1108/02644400010352261
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.