×

Global error bound for the generalized linear complementarity problem over a polyhedral cone. (English) Zbl 1190.90243

In the article known error bounds for linear complementarity problems are extended to generalized linear complementarity problems (GLCP). To achieve the new bounds (under mild assumptions) GLCP is transformed into a problem with a bilevel structure with a standard convex program at the lower level.
Based on this reformulation some characterizations of the solution set of GLCP are presented which finally are used to obtain the error bounds.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequality and Complementarity Problems. Springer, New York (2003) · Zbl 1062.90002
[2] Habetler, G.T., Price, A.L.: Existence theory for generalized nonlinear complementarity problems. J. Optim. Theory Appl. 7, 223–239 (1971) · Zbl 0212.24001 · doi:10.1007/BF00928705
[3] Karamardian, S.: Generalized complementarity problem. J. Optim. Theory Appl. 8, 161–167 (1971) · Zbl 0208.46301 · doi:10.1007/BF00932464
[4] Andreani, R., Friedlander, A., Santos, S.A.: On the resolution of the generalized nonlinear complementarity problem. SIAM J. Optim. 12, 303–321 (2001) · Zbl 1006.65068 · doi:10.1137/S1052623400377591
[5] Kanzow, C., Fukushima, M.: Equivalence of the generalized complementarity problem to differentiable unconstrained minimization. J. Optim. Theory Appl. 90, 581–603 (1996) · Zbl 0866.90124 · doi:10.1007/BF02189797
[6] Wang, Y.J., Ma, F.M., Zhang, J.Z.: A nonsmooth L-M method for solving the generalized nonlinear complementarity problem over a polyhedral cone. Appl. Math. Optim. 52, 73–92 (2005) · Zbl 1087.65064 · doi:10.1007/s00245-005-0823-4
[7] Zhang, X.Z., Ma, F.M., Wang, Y.J.: A Newton-type algorithm for generalized linear complementarity problem over a polyhedral cone. Appl. Math. Comput. 169, 388–401 (2005) · Zbl 1080.65052 · doi:10.1016/j.amc.2004.09.057
[8] Ferris, M.C., Mangasarian, O.L.: Error bound and strong upper semicontinuity for monotone affine variational inequalities. Computer Sciences Department, University of Wisconsin, Technical Report 1056 (1992) · Zbl 0794.49008
[9] Giannessi, F., Maugeri, A.: Variational Analysis and Applications. Springer, New York (2005) · Zbl 1077.49001
[10] Pang, J.S.: Error bounds in mathematical programming. Math. Program. 79, 299–332 (1997) · Zbl 0887.90165
[11] Luo, Z.Q., Mangasarian, O.L., Ren, J., Solodov, M.V.: New error bound for the linear complementarity problem. Math. Oper. Res. 19, 880–892 (1994) · Zbl 0833.90113 · doi:10.1287/moor.19.4.880
[12] Mangasarian, O.L., Ren, J.: New improved error bound for the linear complementarity problem. Math. Program. 66, 241–255 (1994) · Zbl 0829.90124 · doi:10.1007/BF01581148
[13] Mangasarian, O.L., Shiau, T.H.: Error bounds for monotone linear complementarity problems. Math. Program. 36, 81–89 (1986) · Zbl 0613.90095 · doi:10.1007/BF02591991
[14] Mangasarian, O.L.: Error bounds for nondegenerate monotone linear complementarity problems. Math. Program. 48, 437–445 (1990) · Zbl 0716.90094 · doi:10.1007/BF01582267
[15] Mathias, R., Pang, J.S.: Error bound for the linear complementarity problem with a P-matrix. Linear Algebra Appl. 132, 123–136 (1990) · Zbl 0711.90077 · doi:10.1016/0024-3795(90)90058-K
[16] Zhang, J.Z., Xiu, N.H.: Global s-type error bound for extended linear complementarity problem and applications. Math. Program. (Ser. B) 88, 391–410 (2000) · Zbl 1101.90397 · doi:10.1007/s101070050023
[17] Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming, Theory and Algorithms. Wiley, New York (1993) · Zbl 0774.90075
[18] Hoffman, A.J.: On the approximate solutions of linear inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)
[19] Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method. Computing (Suppl.) 15, 237–249 (2001) · Zbl 1001.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.