×

Existence of multiple periodic solutions for a class of second-order delay differential equations. (English) Zbl 1190.34083

The paper considers the second order multi-dimensional differential delay equation
\[ x^{\prime\prime}(t)=-f(x(t-\tau)),\qquad x\in\mathbb R^n,\quad\tau>0 \]
with a particular symmetric behaviour of the vector-function \(f(x)\) at \(x=0+\) and \(x=+\infty\). A lower estimate for the number of periodic solutions of period \(2\tau\) in the system is given. The paper generalizes similar results derived for a like first order differential delay equation considered in [Z. M. Guo and J. S. Yu, J. Differ. Equations 218, No. 1, 15–35 (2005; Zbl 1095.34043)].

MSC:

34K13 Periodic solutions to functional-differential equations

Citations:

Zbl 1095.34043
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benci, V., On critical point theory for indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc, 274, 533-572 (1982) · Zbl 0504.58014
[2] Benci, V.; Rabinowitz, P. H., Critical point theorem for indefinite functionals, Invent. Math, 53, 241-273 (1979) · Zbl 0465.49006
[3] Claeyssen, J. R., The integral-averaging bifurcation methods and the general one-delay equation, J. Math. Anal. Appl, 78, 428-439 (1980)
[4] Chang, K. C., Infinite Dimensional Morse Theory and Multiple Solution Problems (1993), Birkhäuser: Birkhäuser Boston
[5] Chen, Y. S., The existence of periodic solutions of the equation \(x^\prime(t) = - f(x(t), x(t - r))\), J. Math. Anal. Appl., 163, 227-237 (1992) · Zbl 0755.34063
[6] Chen, Y. S., The existence of periodic solutions for a class of neutral differential difference equations, Bull. Austral. Math. Soc, 33, 508-516 (1992) · Zbl 0755.34062
[7] Fei, G. H., Multiple periodic solutions of differential delay equations via Hamiltonian systems (I), Nonlinear Anal., 65, 25-39 (2006) · Zbl 1136.34329
[8] Fei, G. H., Multiple periodic solutions of differential delay equations via Hamiltonian systems (II), Nonlinear Anal., 65, 40-58 (2006) · Zbl 1136.34330
[9] Fannio, L. O., Multiple periodic solution of Hamiltonian systems with strong resonance at infinity, Discrete and Cont. Dynamical Syst., 3, 251-264 (1997) · Zbl 0989.37060
[10] Grafton, R., A periodicity theorem for autonomous functional differential equations, J. Differential Equations, 6, 87-109 (1969) · Zbl 0175.38503
[11] Gaines, R.; Mawhin, J., Coincide Degree and Nonlinear Differential Equation (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0326.34021
[12] Ge, W. G., Number of simple periodic solutions of differential difference equation on \(x^\prime(t) = - f(x(t - 1))\), Chinese Ann. Math., 14A, 480-491 (1993)
[13] Guo, Z. M.; Yu, J. S., Multiplicity results for periodic solutions to delay differential difference equations via critical point theory, J. Differential Equations, 218, 15-35 (2005) · Zbl 1095.34043
[14] Hale, J. K., Theory of Functional Differential Equations (1977), Springer-Verlag
[15] Hale, J. K.; Lunel, S. M.V., Introduction to Functional Differential Equations (1993), Springer-Verlag · Zbl 0787.34002
[16] Kaplan, J. L.; Yorke, J. A., Ordinary differential equations which yield periodic solution of delay equations, J. Math. Anal. Appl., 48, 317-324 (1974) · Zbl 0293.34102
[17] Kaplan, J. L.; Yorke, J. A., On the stability of a periodic solution of a differential delay equation, SIAM J. Math. Anal., 6, 268-282 (1975) · Zbl 0241.34080
[18] Kaplan, J. L.; Yorke, J. A., On the nonlinear differential delay equation \(x^\prime(t) = - f(x(t), x(t - 1))\), J. Differential Equations, 23, 293-314 (1977) · Zbl 0307.34070
[19] Li, J. B.; He, X. Z., Multiple periodic solutions of differential delay equations created by asymptotically linear Hamiltonian systems, Nonlinear Anal. TMA, 31, 45-54 (1998) · Zbl 0918.34066
[20] Li, J. B.; He, X. Z., Proof and generalization of Kaplan-Yorke’s conjecture on periodic solution of differential delay equations, Sci. China (Ser.A), 42, 9, 957-964 (1999) · Zbl 0983.34061
[21] Li, J. B.; He, X. Z., Periodic solutions of some differential delay equations created by Hamiltonian systems, Bull. Austral. Math. Soc., 60, 377-390 (1999) · Zbl 0946.34063
[22] Li, S. J.; Liu, J. Q., Morse theory and asymptotically linear Hamiltonian systems, J. Differential Equations, 78, 53-73 (1989) · Zbl 0672.34037
[23] Lu, S. P.; Ge, W. G., Periodic solutions of the second order differential equation with deviating Arguments, Acta. Mathematic Sinica, 45, 811-818 (2002) · Zbl 1027.34079
[24] Long, Y. M.; Zehnder, E., Morse theory for forced oscillations of asymptotically linear Hamiltonian systems, (Albeverio, S.; etal., Stochastic processes, Physics and Geometry. Proceedings of the Conference in Asconal/Locarno, Switzerland (1990), World Scientific: World Scientific Singapore), 528-563
[25] Nussbaum, R. D., Periodic solutions of some nonlinear autonomous functional differential equations, Ann. Math. Pura. Appl., 10, 263-306 (1974) · Zbl 0323.34061
[26] Schechter, M., Spectra of Partial Differential Equation (1971), North-Holland: North-Holland Amsterdam
[27] Shu, X. B.; Xu, Y. T., Multiple periodic solutions to a class of second-order functional differential equations of mixed type, Acta. Math. Appl. Sin., 29, 5, 821-831 (2006)
[28] Wen, L. Z., The existence of periodic solutions of a class differential difference equations, Chinese Bull. Sci., 32, 934-935 (1987)
[29] Wang, G. Q.; Yan, J. R., Existence of periodic solutions for second order nonlinear neutral delay equations, Acta Math. Sinica, 47, 2, 379-384 (2004) · Zbl 1387.34100
[30] Wang, G. Q.; Cheng, S. S., Even periodic solutions of higher order duffing differential equations, Czechoslovak Math. J., 57, 132, 331-343 (2007) · Zbl 1174.34037
[31] Xu, Y. T.; Guo, Z. M., Applications of a \(Z_p\) index theory to periodic solutions for a class of functional differential equations, J. Math. Anal. Appl, 257, 1, 189-205 (2001) · Zbl 0992.34051
[32] Xu, Y. T.; Guo, Z. M., Applications of a geometrical index theory to functional differential equations, Acta. Math. Sinica, 44, 6, 1027-1036 (2001) · Zbl 1027.34078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.