×

Fixed point property for Banach algebras associated to locally compact groups. (English) Zbl 1185.43002

Let \(E\) be a Banach space and \(K\) be a nonempty bounded convex subset of \(E\). We say that \(K\) has the fixed point property if every nonexpansive mapping \(T: K\mapsto K\) (i.e., \(\|Tx-Ty\|\leq \|x-y\|\) for all \(x,y\in K\)) has a fixed point. We say that \(E\) has the weak fixed point property if every weakly compact convex subset of \(E\) has the fixed point property. A dual Banach space \(E\) is said to have the weak* fixed point property if each weak* compact convex subset of \(E\) has the fixed point property.
Let \(S\) be a semitopological semigroup, \(S\) is called left reversible if \(\overline{aS}\cap\overline{bS}\neq\empty\) for any \(a,b\in S\), where \(\overline{K}\) denotes the closure of \(K\). Clearly, abelian semigroups and groups are left reversible. We say that a Banach space \(E\) has the weak fixed point property for left reversible semigroups if whenever \(S\) is a left reversible semitopological semigroup, \(K\) is a nonempty weakly compact convex subset of \(E\), and \(S\) acts on \(K\) so that the action is separately continuous and nonexpansive, then \(K\) has a common fixed point for \(S\). Similarly we can define the weak* fixed point property for left reversible semigroups.
In the paper under review the authors investigate the question under which conditions various Banach algebras associated to a locally compact group \(G\) have the weak* fixed point property for left reversible semigroups. They prove for example, that if \(G\) is a separable locally compact group with a compact neighborhood of the identity invariant under inner automorphisms, then the Fourier-Stieltjes algebra of \(G\) has the weak* fixed point property for left reversible semigroups if and only if \(G\) is compact. This generalizes a classical result of T. C. Lim for the case when \(G\) is the circle group.

MSC:

43A20 \(L^1\)-algebras on groups, semigroups, etc.
47H10 Fixed-point theorems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alspach, D., A fixed point free nonexpansive map, Proc. Amer. Math. Soc., 82, 423-424 (1981) · Zbl 0468.47036
[2] Baggett, L., A separable group having a discrete dual space is compact, J. Funct. Anal., 10, 131-148 (1972) · Zbl 0252.22012
[3] Benavides, T. D.; Japon Pineda, M. A.; Prus, S., Weak compactness and fixed point property for affine maps, J. Funct. Anal., 209, 1-15 (2004) · Zbl 1062.46017
[4] Benavides, T. D.; Japon Pineda, M. A., Fixed points of nonexpansive mappings in spaces of continuous functions, Proc. Amer. Math. Soc., 133, 3037-3046 (2005) · Zbl 1081.47054
[5] Bruck, R. E., A common fixed point theorem for a commutative family of nonexpansive mappings, Pacific J. Math., 53, 59-71 (1974) · Zbl 0312.47045
[6] Chu, C. H., A note on scattered \(C^\ast \)-algebras and the Radon-Nikodym property, J. London Math. Soc., 24, 533-536 (1981) · Zbl 0438.46041
[7] S. Dhompongsa, W. Fupinwong, W. Lawton, Fixed point property for \(C^{\ast;}\)-algebra, preprint; S. Dhompongsa, W. Fupinwong, W. Lawton, Fixed point property for \(C^{\ast;}\)-algebra, preprint · Zbl 1217.46009
[8] Dowling, P. N.; Lennard, C. J.; Turett, B., The fixed point property for subsets of some classical Banach spaces, Nonlinear Anal., 49, 141-145 (2002) · Zbl 1008.47053
[9] Dowling, P. N.; Randrianantoanina, N., Spaces of compact operators on a Hilbert space with the fixed point property, J. Funct. Anal., 168, 111-120 (1999) · Zbl 0944.47043
[10] Dowling, P. N.; Randrianantoanina, B.; Turett, B., The fixed point property via dual space properties, J. Funct. Anal., 255, 768-775 (2008) · Zbl 1167.46011
[11] van Dulst, D.; Sims, B., Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), (Banach Space Theory and Its Applications, Proceedings Bucharest. Banach Space Theory and Its Applications, Proceedings Bucharest, 1981. Banach Space Theory and Its Applications, Proceedings Bucharest. Banach Space Theory and Its Applications, Proceedings Bucharest, 1981, Lecture Notes in Math., vol. 991 (1983), Springer-Verlag) · Zbl 0512.46015
[12] Diestel, J.; Uhl, J. J., Vector Measures, Math. Survey, vol. 15 (1977), Amer. Math. Soc. · Zbl 0369.46039
[13] Eymard, P., L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92, 181-236 (1964) · Zbl 0169.46403
[14] García-Falset, J., The fixed point property in Banach spaces with the NUS-property, J. Math. Anal. Appl., 215, 2, 532-542 (1997) · Zbl 0902.47048
[15] Goebel, K.; Kirk, W. A., Topics in Metric, Fixed Point Theory (1990), University Press: University Press Cambridge · Zbl 0708.47031
[16] Granirer, E. E.; Leinert, M., On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebras of \(B(G)\) and of the measure algebra \(M(G)\), Rocky Mountain J. Math., 11, 3, 459-472 (1981) · Zbl 0502.43004
[17] Graham, C. C.; Lau, A. T.-M.; Leinert, M., Separable translation-invariant subspaces of \(M(G)\) and other dual spaces on locally compact groups, Colloq. Math., 55, 1, 131-145 (1988) · Zbl 0658.43005
[18] Holmes, R. D.; Lau, A. T.-M., Nonexpansive actions of topological semigroups and fixed points, J. London Math. Soc., 5, 2, 330-336 (1972) · Zbl 0248.47029
[19] Jolissaint, P., Invariant states and a conditional fixed point property for affine actions, Math. Ann., 304, 3, 561-579 (1996) · Zbl 0842.46042
[20] Kirk, W. A., A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72, 1004-1006 (1965) · Zbl 0141.32402
[21] Lacey, E. H., The Isometric Theory of Classical Banach Spaces (1974), Springer-Verlag: Springer-Verlag New York · Zbl 0285.46024
[22] Lau, A. T.-M., Invariant means on almost periodic functions and fixed point properties, Rocky Mountain J. Math., 3, 69-76 (1973) · Zbl 0279.43002
[23] Lau, A. T.-M., Semigroup of nonexpansive mappings on a Hilbert space, J. Math. Anal. Appl., 105, 514-522 (1985) · Zbl 0656.47049
[24] Lau, A. T.-M.; Leinert, M., Fixed point property and Fourier algebra of a locally compact group, Trans. Amer. Math. Soc., 360, 12, 6389-6402 (2008) · Zbl 1153.43008
[25] Lau, A. T.-M.; Mah, P. F., Quasi-normal structures for certain spaces of operators on a Hilbert space, Pacific J. Math., 121, 109-118 (1986) · Zbl 0538.46011
[26] Lau, A. T.-M.; Mah, P. F., Normal structure in dual Banach spaces associated with a locally compact group, Trans. Amer. Math. Soc., 310, 341-353 (1988) · Zbl 0706.43003
[27] Lau, A. T.-M.; Mah, P. F.; Ülger, A., Fixed point property and normal structure for Banach spaces associated to locally compact groups, Proc. Amer. Math. Soc., 125, 2021-2027 (1997) · Zbl 0868.43001
[28] Lau, A. T.-M.; Paterson, A. L.T., Group amenability properties for von Neumann algebras, Indiana Univ. Math. J., 55, 4, 1363-1388 (2006) · Zbl 1106.22008
[29] Lau, A. T.-M.; Ülger, A., Some geometric properties on the Fourier and Fourier-Stieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc., 337, 321-359 (1993) · Zbl 0778.43003
[30] Lau, A. T.-M.; Takahashi, W., Weak convergence and nonlinear ergodic theorems for reversible semigroups of nonexpansive mappings, Pacific J. Math., 126, 277-294 (1987) · Zbl 0587.47058
[31] Lau, A. T.-M.; Takahashi, W., Invariant submeans and semigroups of non-expansive mappings on Banach spaces with normal structure, J. Funct. Anal., 25, 79-88 (1996) · Zbl 0862.43001
[32] Lau, A. T.-M.; Zhang, Yong, Fixed point properties of semigroups of non-expansive mappings, J. Funct. Anal., 254, 2534-2554 (2008) · Zbl 1149.47046
[33] Lennard, C., \(C_1\) is uniformly Kadec-Klee, Proc. Amer. Math. Soc., 109, 71-77 (1990) · Zbl 0758.46017
[34] Lim, T. C., Characterization of normal structures, Proc. Amer. Math. Soc., 43, 313-319 (1974)
[35] Lim, T. C., Asymptotic centres and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math., 90, 135-143 (1980) · Zbl 0454.47046
[36] Mitchell, T., Fixed points of left reversible semigroups of non-expansive mappings, Kodai Math. Sem. Rep., 22, 322-323 (1970) · Zbl 0224.47020
[37] Takesaki, M., Theory of Operator Algebras I (1979), Springer-Verlag: Springer-Verlag New York · Zbl 0990.46034
[38] Taylor, K., Geometry of the Fourier algebras and locally compact groups with atomic representations, Math. Ann., 262, 183-190 (1983) · Zbl 0488.43009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.