×

Distributed leaderless consensus algorithms for networked Euler-Lagrange systems. (English) Zbl 1175.93074

Summary: This article proposes and analyses distributed, leaderless, model-independent consensus algorithms for networked Euler-Lagrange systems. We propose a fundamental consensus algorithm, a consensus algorithm accounting for actuator saturation, and a consensus algorithm accounting for unavailability of measurements of generalised coordinate derivatives, for systems modelled by Euler-Lagrange equations. Due to the fact that the closed-loop interconnected Euler-Lagrange equations using these algorithms are non-autonomous, Matrosov’s theorem is used for convergence analysis. It is shown that consensus is reached on the generalised coordinates and their derivatives of the networked Euler-Lagrange systems as long as the undirected communication topology is connected. Simulation results show the effectiveness of the proposed algorithms.

MSC:

93B40 Computational methods in systems theory (MSC2010)
93A14 Decentralized systems
93B50 Synthesis problems
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chopra N, Advances in Robot Control: From Everyday Physics to Human-Like Movements pp 107– (2006)
[2] DOI: 10.1109/CDC.2007.4434036 · doi:10.1109/CDC.2007.4434036
[3] Graham A, Kronecker Products and Matrix Calculus with Applications (1981)
[4] Khalil HK, Nonlinear Systems, 2. ed. (1996)
[5] Krogstad, TR and Gravdahl, JT. 6-DOF Mutual Synchronisation of Formation Flying Spacecraft. Proceedings of the IEEE Conference on Decision and Control. December2006. pp.5706–5711. San Diego, CA
[6] DOI: 10.1016/j.sysconle.2005.02.004 · Zbl 1129.93303 · doi:10.1016/j.sysconle.2005.02.004
[7] DOI: 10.1109/TAC.2007.902752 · Zbl 1366.93503 · doi:10.1109/TAC.2007.902752
[8] DOI: 10.1016/0024-3795(94)90486-3 · Zbl 0802.05053 · doi:10.1016/0024-3795(94)90486-3
[9] DOI: 10.1109/TAC.2005.864190 · Zbl 1366.93391 · doi:10.1109/TAC.2005.864190
[10] DOI: 10.1109/JPROC.2006.887293 · Zbl 1376.68138 · doi:10.1109/JPROC.2006.887293
[11] DOI: 10.1080/00207178808906130 · Zbl 0649.93052 · doi:10.1080/00207178808906130
[12] DOI: 10.1002/acs.916 · Zbl 1115.93338 · doi:10.1002/acs.916
[13] DOI: 10.1109/TAC.2008.924961 · Zbl 1367.93567 · doi:10.1109/TAC.2008.924961
[14] DOI: 10.1002/rnc.1147 · Zbl 1266.93010 · doi:10.1002/rnc.1147
[15] DOI: 10.1109/MCS.2007.338264 · doi:10.1109/MCS.2007.338264
[16] Spong MW, Robot Modeling and Control (2006)
[17] DOI: 10.1109/TRO.2005.858852 · doi:10.1109/TRO.2005.858852
[18] DOI: 10.1109/TCST.2006.883201 · doi:10.1109/TCST.2006.883201
[19] DOI: 10.1109/TAC.2007.895948 · Zbl 1366.93414 · doi:10.1109/TAC.2007.895948
[20] DOI: 10.1007/s10955-005-6999-9 · Zbl 1149.93316 · doi:10.1007/s10955-005-6999-9
[21] DOI: 10.1002/rnc.1144 · Zbl 1266.93013 · doi:10.1002/rnc.1144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.