×

Observable correlations in two-qubit states. (English) Zbl 1170.81016

Summary: The total correlations in a bipartite quantum state are well quantified by the quantum mutual information, the amount of which is not necessarily fully extractable by local measurements. The observable correlations are the maximal correlations that can be extracted via local measurements, and have an intuitive interpretation as a measure of classical correlations. We evaluate the observable correlations for generic two-qubit states and obtain analytical expressions in some particular cases. The intricate and subtle relationships among the total, quantum and classical correlations are illustrated in terms of observable correlations. In the course, we also disprove an intuitive conjecture of Lindblad which states that the classical correlations account for at least half of the total correlations, or equivalently, correlations are more classical than quantum.

MSC:

81P68 Quantum computation
94A40 Channel models (including quantum) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adami, C., Cerf, N.J.: Von Neumann capacity of noisy quantum channels. Phys. Rev. A 56, 3470–3483 (1997) · doi:10.1103/PhysRevA.56.3470
[2] Barnett, S.M., Phoenix, S.J.D.: Entropy as a measure of quantum optical correlation. Phys. Rev. A 40, 2404–2409 (1989) · doi:10.1103/PhysRevA.40.2404
[3] Barnett, S.M., Phoenix, S.J.D.: Information theory, squeezing, and quantum correlations. Phys. Rev. A 44, 535–545 (1991) · doi:10.1103/PhysRevA.44.535
[4] Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996) · Zbl 1371.81041 · doi:10.1103/PhysRevA.54.3824
[5] Bhatia, R.: Matrix Analysis. Springer, Berlin (1997) · Zbl 0863.15001
[6] Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991) · Zbl 0762.94001
[7] Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1974) · Zbl 0985.62001
[8] Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935) · Zbl 0012.04201 · doi:10.1103/PhysRev.47.777
[9] Everett III, H.: The theory of the universal wavefunction. In: DeWitt, B.S., Graham, N. (eds.) The Many-Worlds Interpretation of Quantum Mechanics, pp. 3–140. Princeton University Press, Princeton (1973) (written in 1957, first publication herein)
[10] Groisman, B., Popescu, S.A.: Winter, Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005) · doi:10.1103/PhysRevA.72.032317
[11] Hall, M.J.W., Andersson, E., Brougham, T.: Maximum observable correlation for a bipartite quantum system. Phys. Rev. A 74, 062308 (2006) · doi:10.1103/PhysRevA.74.062308
[12] Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899–6905 (2001) · Zbl 0988.81023 · doi:10.1088/0305-4470/34/35/315
[13] Horodecki, M.: Entanglement measures. Quantum Inf. Comput. 1, 3–26 (2001) · Zbl 1187.81017
[14] Li, N., Luo, S.: Total versus quantum correlations in quantum states. Phys. Rev. A 76, 032327 (2007) · doi:10.1103/PhysRevA.76.032327
[15] Lindblad, G.: Entropy, information and quantum measurements. Commun. Math. Phys. 33, 305–322 (1973) · doi:10.1007/BF01646743
[16] Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39, 111–119 (1974) · Zbl 0294.46052 · doi:10.1007/BF01608390
[17] Lindblad, G.: Quantum entropy and quantum measurements. In: Bendjaballah, C., et al.(eds.) Quantum Aspects of Optical Communications. Lecture Notes in Physics, vol. 378, pp. 71–80. Springer, Berlin (1991)
[18] Nielsen, M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[19] Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2002) · Zbl 1255.81071 · doi:10.1103/PhysRevLett.88.017901
[20] Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1998) · Zbl 1219.81054
[21] Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935) · JFM 61.1561.03 · doi:10.1017/S0305004100013554
[22] Schumacher, B., Westmoreland, M.D.: Quantum mutual information and the one-time pad. Phys. Rev. A 74, 042305 (2006) · doi:10.1103/PhysRevA.74.042305
[23] Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)
[24] Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197–234 (2002) · Zbl 1205.81053 · doi:10.1103/RevModPhys.74.197
[25] Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978) · Zbl 0484.70014 · doi:10.1103/RevModPhys.50.221
[26] Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989) · Zbl 1371.81145 · doi:10.1103/PhysRevA.40.4277
[27] Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001) · Zbl 1187.81043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.