×

Finite-time stabilization of nonlinear dynamical systems via control vector Lyapunov functions. (English) Zbl 1169.93020

Summary: Finite-time stability involves dynamical systems whose trajectories converge to an equilibrium state in finite time. Since finite-time convergence implies nonuniqueness of system solutions in reverse time, such systems possess non-Lipschitzian dynamics. Sufficient conditions for finite-time stability have been developed in the literature using Hölder continuous Lyapunov functions. In this paper, we develop a general framework for finite-time stability analysis based on vector Lyapunov functions. Specifically, we construct a vector comparison system whose solution is finite-time stable and relate this finite-time stability property to the stability properties of a nonlinear dynamical system using a vector comparison principle. Furthermore, we design a universal decentralized finite-time stabilizer for large-scale dynamical systems that is robust against full modeling uncertainty. Finally, we present two numerical examples for finite-time stabilization involving a large-scale dynamical system and a combustion control system.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C10 Nonlinear systems in control theory
93A14 Decentralized systems
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, R. P.; Lakshmikantham, V., Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations (1993), World Scientific: World Scientific Singapore · Zbl 0785.34003
[2] Filippov, A. F., Differential Equations with Discontinuous Right-Hand Sides. Mathematics and its Applications (Soviet Series) (1988), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0664.34001
[3] Kawski, M., Stabilization of nonlinear systems in the plane, Syst. Control Lett., 12, 169-175 (1989) · Zbl 0666.93103
[4] Yoshizawa, T., Stability Theory by Liapunov’s Second Method (1966), The Mathematical Society of Japan · Zbl 0144.10802
[5] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1955), McGraw-Hill: McGraw-Hill New York · Zbl 0042.32602
[6] Bhat, S. P.; Bernstein, D. S., Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38, 3, 751-766 (2000) · Zbl 0945.34039
[7] Bhat, S. P.; Bernstein, D. S., Geometric homogeneity with applications to finite-time stability, Math. Control Signals Syst., 17, 101-127 (2005) · Zbl 1110.34033
[8] Haimo, V. T., Finite-time controllers, SIAM J. Control Optim., 24, 760-770 (1986) · Zbl 0603.93005
[9] Bhat, S. P.; Bernstein, D. S., Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Trans. Autom. Control, 43, 678-682 (1998) · Zbl 0925.93821
[10] Hong, Y., Finite-time stabilization and stabilizability of a class of controllable systems, Syst. Control Lett., 46, 231-236 (2002) · Zbl 0994.93049
[11] Hong, Y.; Huang, J.; Xu, Y., On an output feedback finite-time stabilization problem, IEEE Trans. Autom. Control, 46, 305-309 (2001) · Zbl 0992.93075
[12] Qian, C.; Lin, W., A continuous feedback approach to global strong stabilization of nonlinear systems, IEEE Trans. Autom. Control, 46, 1061-1079 (2001) · Zbl 1012.93053
[13] Fuller, A. T., Optimization of some nonlinear control systems by means of Bellman’s equation and dimensional analysis, Int. J. Control, 3, 359-394 (1966)
[14] Ryan, E. P., Singular optimal controls for second-order saturating systems, Int. J. Control, 30, 549-564 (1979) · Zbl 0422.49006
[15] Ryan, E. P., Finite-time stabilization of uncertain nonlinear planar systems, Dyn. Control, 1, 83-94 (1991) · Zbl 0742.93068
[16] Bellman, R., Vector Lyapunov functions, SIAM Journal Control, 1, 32-34 (1962) · Zbl 0144.10901
[17] Matrosov, V. M., Method of vector Liapunov functions of interconnected systems with distributed parameters (Survey), Avtom. Telemekh., 33, 63-75 (1972), (in Russian)
[18] Šiljak, D. D., Large-Scale Dynamic Systems: Stability and Structure (1978), Elsevier North-Holland Inc.: Elsevier North-Holland Inc. New York · Zbl 0382.93003
[19] Lakshmikantham, V.; Matrosov, V. M.; Sivasundaram, S., Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Netherlands · Zbl 0721.34054
[20] Nersesov, S. G.; Haddad, W. M., On the stability and control of nonlinear dynamical systems via vector Lyapunov functions, IEEE Trans. Autom. Control, 51, 2, 203-215 (2006) · Zbl 1366.93553
[21] Kamke, E., Zur Theorie der Systeme gewöhnlicher Differential—Gleichungen. II, Acta Math., 58, 57-85 (1931) · JFM 58.0449.02
[22] Wažewski, T., Systèmes des équations et des inégalités différentielles ordinaires aux deuxiémes membres monotones et leurs applications, Ann. Soc. Pol. Math., 23, 112-166 (1950) · Zbl 0041.20705
[23] Hale, J. K., Ordinary Differential Equations (1980), Wiley: Wiley New York, (reprinted by Krieger, Malabar, 1991) · Zbl 0186.40901
[24] Hahn, W., Stability of Motion (1967), Springer: Springer Berlin · Zbl 0189.38503
[25] Haddad, W. M.; Chellaboina, V., Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems, Nonlinear Anal. Real World Appl., 6, 35-65 (2005) · Zbl 1074.93030
[26] Haddad, W. M.; Chellaboina, V.; Nersesov, S. G., Thermodynamics. A Dynamical Systems Approach (2005), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1077.80001
[27] Bacciotti, A.; Rosier, L., Liapunov Functions and Stability in Control Theory (2001), Springer: Springer London, UK · Zbl 0968.93004
[28] Culick, F. E.C., Nonlinear behavior of acoustic waves in combustion chambers I, Acta Astronaut., 3, 715-734 (1976) · Zbl 0346.76062
[29] Awad, E.; Culick, F. E.C., On the existence and stability of limit cycles for longitudinal acoustic modes in a combustion chamber, Combust. Sci. Technol., 9, 195-222 (1986)
[30] Awad, E.; Culick, F. E.C., The two-mode approximation to nonlinear acoustics in combustion chambers I. Exact solution for second order acoustics, Combust. Sci. Technol., 65, 39-65 (1989)
[31] Jahnke, C. C.; Culick, F. E.C., Application of dynamical systems theory to nonlinear combustion instabilities, J. Propul. Power, 10, 508-517 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.