×

Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems. (English) Zbl 1168.58302

Summary: We find new conditions, which are different from those used in previous related studies, to ensure the existence of infinitely many homoclinic orbits for the second order Hamiltonian systems of the form \[ -\ddot q = V_q (t,q). \] Here, we assume that \(V(t,q)\) depends periodically on \(t\), and assume, on \(q\), that \(V(t,q)\) is asymptotically quadratic at \(q=0\) and is, as \(|q|\rightarrow \infty \), either asymptotically quadratic or superquadratic, as well as the new conditions.

MSC:

58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
58E50 Applications of variational problems in infinite-dimensional spaces to the sciences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosetti, A.; Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[2] Ambrosetti, A.; Coti Zelati, V., Multiplicité des orbites homoclines pour des systémes conservatifs, C. R. Acad. Sci. Paris sér. I Math., 314, 601-604 (1992) · Zbl 0780.49008
[3] Arioli, G.; Szulkin, A., Homoclinic solutions of Hamiltonian systems with symmetry, J. Differential Equations, 158, 291-313 (1999) · Zbl 0944.37030
[4] Cerami, G., Un criterio di esistenza per i punti critici su varietá illimitate, Istit. Lombardo Accad. Sci. Lett. Rend. A, 112, 332-336 (1978) · Zbl 0436.58006
[5] Coti-Zelati, V.; Ekeland, I.; Séré, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288, 133-160 (1990) · Zbl 0731.34050
[6] Coti-Zelati, V.; Rabinowitz, P., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4, 693-727 (1991) · Zbl 0744.34045
[7] Ding, Y. H., Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms, Commun. Contemp. Math., 8, 453-480 (2006) · Zbl 1104.70013
[8] Ding, Y. H.; Luan, S. X., Multiple solutions for a class of nonlinear Schrödinger equations, J. Differential Equations, 207, 423-457 (2004) · Zbl 1072.35166
[9] Ding, Y. H.; Lee, Cheng, Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, 222, 137-163 (2006) · Zbl 1090.35077
[10] Ding, Y. H.; Willem, M., Homoclinic orbits of a Hamiltonian system, Z. Angew. Math. Phys., 50, 759-778 (1999) · Zbl 0997.37041
[11] Ding, Y. H.; Girardi, M., Infinitely many homoclinic orbits of a Hamitonian system with symmetry, Nonlinear Anal. TMA, 38, 391-415 (1999) · Zbl 0938.37034
[12] Hofer, H.; Wysocki, K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann., 288, 483-503 (1990) · Zbl 0702.34039
[13] Jeanjean, L.; Tanaka, K., Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations, 21, 3, 287-318 (2004) · Zbl 1060.35012
[14] Lions, P. L., The concentration-compactness principle in the calculus of variations. The locally compact cases, Part II, AIP Anal. non linéaire, 1, 223-283 (1984) · Zbl 0704.49004
[15] Melnikov, V. K., On the stability of the center for periodic perturbations, Trans. Moscow Math. Soc., 12, 1-57 (1963)
[16] Poincaé, H., Les méthodes Nouvelles de la Mécanique Céleste (1897-1899), Gauthier-Villars: Gauthier-Villars Paris
[17] Rabinowitz, P. H., Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edingburgh Sect. A, 114, 33-38 (1990) · Zbl 0705.34054
[18] Rabinowitz, P. H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 473-499 (1991) · Zbl 0707.58022
[19] Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209, 27-42 (1992) · Zbl 0725.58017
[20] Séré, E., Looking for the Bernoulli shift, Ann. Inst. H. Poincaé Anal. Non Linéaire, 10, 561-590 (1993) · Zbl 0803.58013
[21] Szulkin, A.; Zou, W., Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal., 187, 25-41 (2001) · Zbl 0984.37072
[22] Tanaka, K., Homoclinic orbits in a first order superquadratic Hamiltonian system. Convergence of subharmonic orbits, J. Differential Equations, 94, 315-339 (1991) · Zbl 0787.34041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.