×

Slip effects on mixed convective flow and heat transfer from a vertical plate. (English) Zbl 1167.80319

Summary: Laminar mixed convection over an isothermal vertical plate has been modeled with first-order momentum and thermal discontinuities at the wall. Local non-similarity transformations, using two non-similarity variables, have been applied to study the mixed convection boundary layer problem. Numerical solutions were obtained for varying conditions in assisting flow based on the three-equation model. Non-similar velocity and temperature distributions within the boundary layer have been presented. Results are also presented for the effect of non-continuum upon wall slip velocity, temperature jump, wall shear stress and boundary layer thickness in both gaseous and liquid flows for \(Gr_x / Re_x^2\) varying from 0.0001 to 8.0.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76R05 Forced convection
76R10 Free convection

Software:

bvp4c
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sparrow, E. M.; Eichhorn, R.; Gregg, J. L.: Combined forced and free convection in a boundary layer flow, Phys. fluids 2, No. 3, 319-328 (1959) · Zbl 0086.40601 · doi:10.1063/1.1705928
[2] Schneider, W.: A similarity solution for combined forced and free convection flow over a horizontal plate, Int. J. Heat mass transfer 22, No. 10, 1401-1406 (1979) · Zbl 0414.76066 · doi:10.1016/0017-9310(79)90202-3
[3] Merkin, J. H.; Pop, I.: Mixed convection along a vertical surface: similarity solutions for uniform flow, Fluid dyn. Res. 30, No. 4, 233-250 (2002) · Zbl 1064.76610 · doi:10.1016/S0169-5983(02)00042-4
[4] Oosthuizen, P. H.; Hart, R.: A numerical study of laminar combined convective flow over flat plates, J. heat transfer 95, No. 1, 60-63 (1973)
[5] Merkin, J. H.: The effect of buoyancy forces on the boundary-layer flow over a semi-infinite vertical flat plate in a uniform free stream, J. fluid mech. 35, No. 3, 439-450 (1969) · Zbl 0164.56201 · doi:10.1017/S0022112069001212
[6] Acrivos, A.: On the combined effect of forced and free convection heat transfer in laminar boundary layer flows, Chem. eng. Sci. 21, No. 4, 343-352 (1966)
[7] Lloyd, J. R.; Sparrow, E. M.: Combined forced and free convection flow on vertical surfaces, Int. J. Heat mass transfer 13, No. 2, 434-438 (1970)
[8] Raju, M. S.; Liu, X. Q.; Law, C. K.: A formulation of combined forced and free convection past horizontal and vertical surfaces, Int. J. Heat mass transfer 27, No. 12, 2215-2224 (1984) · Zbl 0554.76066 · doi:10.1016/0017-9310(84)90080-2
[9] Lin, H. T.; Chen, C. C.: Mixed convection on vertical plate for fluids of any Prandtl number, Heat mass transfer 22, 159-168 (1988)
[10] Zubair, S. M.; Kadaba, P. V.: Similarity transformations for boundary layer equations in unsteady mixed convection, Int. commun. Heat mass transfer 17, No. 2, 215-226 (1990)
[11] Risbeck, W. R.; Chen, T. S.; Armaly, B. F.: Laminar mixed convection over horizontal flat plates with power-law variation in surface temperature, Int. J. Heat mass transfer 36, No. 7, 1859-1866 (1993) · Zbl 0775.76170 · doi:10.1016/S0017-9310(05)80173-5
[12] Gebhart, B.; Jaluria, Y.; Mahajan, R. L.; Sammakia, B.: Buoyancy-induced flows and transport, (1988) · Zbl 0699.76001
[13] Gad-El-Hak, M.: The fluid mechanics of microdevices – the freeman scholar lecture, J. fluids eng. 121, No. 1, 5-33 (1999)
[14] White, F. M.: Viscous fluid flow, (2006)
[15] Tretheway, D. C.; Meinhart, C. D.: Apparent fluid slip at hydrophobic microchannel walls, Phys. fluids 14, No. 3, L9-L12 (2002)
[16] Ho, C. M.; Tai, Y. C.: Micro-electro-mechanical-systems (MEMS) and fluid flows, Ann. rev. Fluid mech. 30, No. 1, 579-612 (1998)
[17] Mala, M. G.; Li, D.: Flow characteristics of water in microtubes, Int. J. Heat fluid flow 20, No. 2, 142-148 (1999)
[18] Obot, N. T.: Toward a better understanding of friction and heat/mass transfer in microchannels – a literature review, Microscale thermophys. Eng. 6, No. 3, 155-173 (2002)
[19] Koo, J.; Kleinstreuer, C.: Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects, J. micromech. Microeng. 13, No. 5, 568-579 (2003)
[20] Stone, H. A.; Stroock, A. D.; Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Ann. rev. Fluid mech. 36, 381-411 (2004) · Zbl 1076.76076 · doi:10.1146/annurev.fluid.36.050802.122124
[21] C. Neto, D.R. Evans, E. Bonaccurso, H.-J. Butt, V.S.J. Craig, Boundary slip in Newtonian liquids: a review of experimental studies, Reports on Progress in Physics 68 (12) (2005) 2859 – 2897.
[22] Oosthuizen, P. H.: The effect of surface slip on the laminar free convective heat transfer from an isothermal vertical flat plat, Appl. sci. Res. 16, No. 1, 121-130 (1966)
[23] Eldighidy, S. M.; Fathalah, K. A.: Effect of the slip boundary condition on natural convection heat transfer from an isothermal vertical plate, J. eng. Appl. sci. 1, No. 2, 129-138 (1981)
[24] Martin, M. J.; Boyd, I. D.: Momentum and heat transfer in a laminar boundary layer with slip flow, J. thermophys. Heat transfer 20, No. 4, 710-719 (2006)
[25] Incropera, F. P.; Dewitt, D. P.: Introduction to heat transfer, (2001)
[26] Minkowycz, W. J.; Sparrow, E. M.; Schneider, G. E.; Pletcher, R. H.: Handbook of numerical heat transfer, (1988)
[27] Sparrow, E. M.; Quack, H.; Boerner, C. J.: Local nonsimilarity boundary-layer solutions, Aiaa j. 8, No. 11, 1936-1942 (1970) · Zbl 0219.76032 · doi:10.2514/3.6029
[28] Sparrow, E. M.; Yu, H. S.: Local non-similarity thermal boundary-layer solutions, J. heat transfer 93, No. 4, 328-334 (1971)
[29] Kierzenka, J.; Shampine, L. F.: A BVP solver based on residual control and the Matlab PSE, ACM trans. Math. softw. 27, No. 3, 299-316 (2001) · Zbl 1070.65555 · doi:10.1145/502800.502801
[30] Shampine, L. F.; Gladwell, I.; Thompson, S.: Solving odes with Matlab, (2003) · Zbl 1079.65144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.