×

Partial synchronization in linearly and symmetrically coupled ordinary differential systems. (English) Zbl 1167.37019

The paper studies the following general model of a coupled system composed from linearly and symmetrically coupled ordinary differential equations: \[ \frac{dx^i(t)}{dt}=f(x^i(t),t)+\varepsilon\sum_{j=1}^ma_{ij}\Gamma x^j(t), \quad i=1,2,\dots ,m, \eqno(1) \] where \(m>1\) is the network size, \(x^i\in\mathbb R^n\) is the state variable of the \(i\)-th oscillator, \(t\in [0,+\infty)\) is a continuous time, \(f:\mathbb R^n\times [0,+\infty)\to\mathbb R^n\) is a continuous map, \(A=(a_{ij})\in\mathbb R^{m\times m}\) is a coupling matrix with \(a_{ij}=a_{ji}\) and \(-1\leq a_{ij}\leq 1\), for all \(i,j=1,\dots ,m\), which is determined by the topological structure of the network, \(\varepsilon >0\) is the coupling strength, and \(\Gamma =\text{diag }\{\gamma_1,\gamma_2,\dots ,\gamma_n\}\) with \(\gamma_i\geq 0\) for all \(i=1,2,\dots ,n\), and \(\sum_{i=1}^n\gamma_i>0\). The synchronization phenomena in system (1) are investigated via invariant synchronization manifolds. By means of decomposing the whole space into a direct sum of the synchronization manifold and the transverse space, several criteria for the global asymptotic attractiveness of the invariant synchronization manifold are given. Combining these criteria with some numerical examples, it is shown how topological structure affects partial synchronization. A valuable discussion about the possibility of partial synchronization with increasing coupling strength \(\varepsilon\) is presented. The results on simulations of several numerical examples (coupled 3-D neural networks, coupled Chua circuits, and coupled Lorenz oscillators) are given.

MSC:

37D10 Invariant manifold theory for dynamical systems
34D05 Asymptotic properties of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Strogatz, S. H., Exploring complex networks, Nature, 410, 6825, 268-276 (2001) · Zbl 1370.90052
[2] Albert, R.; Barabási, A. L., Statistic mechanics of complex networks, Rev. Modern Phys., 74, 47-91 (2002)
[3] Wang, X. F.; Chen, G., Complex networks: Small-world, scale-free and beyond, IEEE Circuits Syst. Mag., 3, 1, 6-20 (2003)
[4] Huygens, C., Horoloquim Oscillatorium (1672), F. Muguet: F. Muguet Paris
[5] VanWiggeren, G. D.; Roy, P., Communication with chaotic laser, Science, 279, 20, 1198-1200 (1998)
[6] de S. Vieira, M., Chaos and synchronized chaos in an earthquake model, Phys. Rev. Lett., 82, 1, 201-204 (1999)
[7] Hoppensteadt, F. C.; Izhikevich, E. M., Pattern recognition via synchronization in phase-locked loop neural networks, IEEE Trans. Neural Netw., 11, 734-738 (2000)
[8] Belykh, V. N.; Belykh, I. V.; Hasler, M., Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems, Phys. Rev. E, 62, 5, 6332-6345 (2000)
[9] Belykh, I. V.; Belykh, V. N.; Nevidin, K. V.; Hasler, M., Persistent clusters in lattices of coupled nonidentical chaotic systems, Chaos, 13, 1, 165-178 (2003) · Zbl 1080.37525
[10] Belykh, V. N.; Belykh, I. V.; Hasler, M.; Nevidin, K. V., Cluster synchronization in three-dimensional lattices of diffusively coupled oscillators, Internat. J. Bifur. Chaos, 13, 4, 755-779 (2003) · Zbl 1056.37088
[11] Pogromsky, A.; Santoboni, G.; Nijmeijer, H., Partial synchronization: From symmetry towards stability, Physica D, 172, 1-4, 65-87 (2002) · Zbl 1008.37012
[12] Qin, W. X.; Chen, G. R., Coupling schemes for cluster synchronization in coupled Josephson equations, Physica D, 197, 3-4, 375-391 (2004) · Zbl 1066.34046
[13] Ma, Z. J.; Liu, Z. R., A new method to realize cluster synchronization in connected chaotic networks, Chaos, 16, 2, 023103 (2006) · Zbl 1146.37330
[14] Pecora, L. M.; Carroll, T. L., Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80, 10, 2109-2112 (1998)
[15] Wu, C. W., Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity, 18, 1057-1064 (2005) · Zbl 1089.37024
[16] Wu, C. W.; Chua, L. O., Synchronization in an array of linearly coupled dynamical systems, IEEE Trans. CAS-I, 42, 8, 430-447 (1995) · Zbl 0867.93042
[17] Lu, W. L.; Chen, T. P., New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D, 213, 2, 214-230 (2006) · Zbl 1105.34031
[18] Lu, W. L.; Chen, T. P.; Chen, G. R., Synchronization analysis of linearly coupled systems described by differential equations with a coupling delay, Physica D, 221, 2, 118-134 (2006) · Zbl 1111.34056
[19] Golubitsky, M.; Stewart, I.; Török, A., Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dyn. Syst., 4, 1, 78-100 (2005) · Zbl 1090.34030
[20] Golubitsky, M.; Stewart, I., Nonlinear dynamics of networks: The groupoid formalism, Bull. Amer. Math. Soc., 43, 3, 305-364 (2006) · Zbl 1119.37036
[21] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press · Zbl 0576.15001
[22] Pogromsky, A.; Glad, T.; Nijmeijer, H., On diffusion driven oscillations in coupled dynamical systems, Internat. J. Bifur. Chaos, 9, 4, 629-644 (1999) · Zbl 0970.34029
[23] Pogromsky, A.; Nijmeijer, H., Cooperative oscillatory behavior of mutually coupled dynamical systems, IEEE Trans. CAS-I, 48, 2, 152-162 (2001) · Zbl 0994.82065
[24] Ashwin, P.; Buescu, J.; Stewart, I., From attractor to chaotic saddle: A tale of transverse instability, Nonlinearity, 9, 703-737 (1996) · Zbl 0887.58034
[25] Belykh, V. N.; Belykh, I. V.; Mosekilde, E., Cluster synchronization modes in an ensemble of coupled chaotic oscillators, Phys. Rev. E., 63, 3, 036216 (2001)
[26] Zou, F.; Nosse, J. A., Biffurcation and chaos in cellular neural networks, IEEE Trans. CAS-I, 40, 3, 166-173 (1993)
[27] Tianping Chen, Wei Wu, Continuation of solutions of coupled dynamical systems, arXiv:0708.4275v1; Tianping Chen, Wei Wu, Continuation of solutions of coupled dynamical systems, arXiv:0708.4275v1 · Zbl 1128.37014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.