×

The role of the scalar curvature in a nonlinear elliptic problem on Riemannian manifolds. (English) Zbl 1161.58310

Let \((M, g)\) be a smooth compact Riemannian \(N\)-manifold, \(N \geq 2,\) and \(p > 2\) if \(N = 2\) and \({2 < p < 2^{*} = {2N \over N-2}}\) if \(N \geq 3.\) The authors show that the positive solutions of the problem \[ -\varepsilon^2\Delta_g u + u = u^{p-1}\quad \text{in}\;M \] are generated by stable critical points of the scalar curvature of \(g,\) if \(\varepsilon\) is small enough.

MSC:

58J05 Elliptic equations on manifolds, general theory
58E30 Variational principles in infinite-dimensional spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bahri A., Coron J.M.: On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Comm. Pure Appl. Math. 41(3), 253–294 (1988) · Zbl 0649.35033 · doi:10.1002/cpa.3160410302
[2] Benci V., Bonanno C., Micheletti A.M.: On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds. J. Funct. Anal. 252(2), 464–489 (2007) · Zbl 1130.58010 · doi:10.1016/j.jfa.2007.07.010
[3] Brendle, S.: Blow-up phenomena for the Yamabe problem. J. Am. Math. Soc (to appear) · Zbl 1206.53041
[4] Byeon J., Park J.: Singularly perturbed nonlinear elliptic problems on manifolds (English summary). Calc. Var. Partial Differ. Equ. 24(4), 459–477 (2005) · Zbl 1126.58007 · doi:10.1007/s00526-005-0339-4
[5] Del Pino M., Felmer P.L., Wei J.: On the role of mean curvature in some singularly perturbed Neumann problems. SIAM J. Math. Anal. 31(1), 63–79 (1999) · Zbl 0942.35058 · doi:10.1137/S0036141098332834
[6] Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986) · Zbl 0613.35076 · doi:10.1016/0022-1236(86)90096-0
[7] Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in R n . Mathematical analysis and applications. Part A, Adv. Math. Suppl. Stud., vol. 7a, pp. 369–402. Academic Press, New York (1981) · Zbl 0469.35052
[8] Grossi M., Pistoia A.: On the effect of critical points of distance function in superlinear elliptic problems. Adv. Differ. Equ. 5(10–12), 1397–1420 (2000) · Zbl 0989.35054
[9] Grossi M., Pistoia A., Wei J.: Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory. Calc. Var. Partial Differ. Equ. 11(2), 143–175 (2000) · Zbl 0964.35047 · doi:10.1007/PL00009907
[10] Gui C.: Multipeak solutions for a semilinear Neumann problem. Duke Math. J. 84(3), 739–769 (1996) · Zbl 0866.35039 · doi:10.1215/S0012-7094-96-08423-9
[11] Gui C., Wei J.: Multiple interior peak solutions for some singularly perturbed Neumann problems. J. Differ. Equ. 158(1), 1–27 (1999) · Zbl 1061.35502 · doi:10.1016/S0022-0396(99)80016-3
[12] Gui C., Wei J., Winter M.: Multiple boundary peak solutions for some singularly perturbed Neumann problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(1), 47–82 (2000) · Zbl 0944.35020 · doi:10.1016/S0294-1449(99)00104-3
[13] Kazdan J.L., Warner F.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature. Ann. Math. 101, 317–331 (1975) · Zbl 0297.53020 · doi:10.2307/1970993
[14] Kwong M.K.: Uniqueness of positive solutions of {\(\Delta\)}u u + u p = 0 in \({\mathbb{R}^n}\) . Arch. Ration. Mech. Anal. 105, 243–266 (1989) · Zbl 0676.35032 · doi:10.1007/BF00251502
[15] Hebey E., Vaugon M.: Courbure scalaire prescrite pour des varietes non conformement diffeomorphes a la sphere. C. R. Acad. Sci. Paris, Ser. I 316, 281–282 (1993) · Zbl 0771.53018
[16] Hebey E.: Changements de metriques conformes sur la sphere. Le probleme de Nirenberg. Bull. Sc. Math. 2 e Ser. 114, 215–242 (1990) · Zbl 0713.53023
[17] Hebey E.: Scalar curvature on S N and first spherical harmonics. Differ. Geom. Appl. 5, 71–78 (1995) · Zbl 0816.58039 · doi:10.1016/0926-2245(95)00007-Q
[18] Hirano, N.: Multiple existence of solutions for a nonlinear elliptic problem on a Riemannian manifold. Nonlinear Anal. (to appear) · Zbl 1157.58006
[19] Li Y.Y.: On a singularly perturbed ellittic equation. Adv. Differ. Equ. 2(6), 955–580 (1997)
[20] Li Y.Y.: On a singularly perturbed equation with Neumann boundary condition. Comm. Partial Differ. Equ. 23(3–4), 487–545 (1998) · Zbl 0898.35004
[21] Lin C.S., Ni W.M., Takagi I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72(1), 1–27 (1988) · Zbl 0676.35030 · doi:10.1016/0022-0396(88)90147-7
[22] Ni W.M., Takagi I.: On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math. 44(7), 819–851 (1991) · Zbl 0754.35042 · doi:10.1002/cpa.3160440705
[23] Ni W.M., Takagi I.: Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J. 70(2), 247–281 (1993) · Zbl 0796.35056 · doi:10.1215/S0012-7094-93-07004-4
[24] Visetti, D.: Multiplicity of solutions of a zero-mass nonlinear equation on a Riemannian manifold. J. Differ. Equ. (to appear) · Zbl 1152.58018
[25] Wei J.: On the boundary spike layer solutions to a singularly perturbed Neumann problem. J. Differ. Equ. 134(1), 104–133 (1997) · Zbl 0873.35007 · doi:10.1006/jdeq.1996.3218
[26] Wei J.: On the interior spike layer solutions to a singularly perturbed Neumann problem (English summary). Tohoku Math. J. 50(2), 159–178 (1998) · Zbl 0918.35024 · doi:10.2748/tmj/1178224971
[27] Wei J., Winter M.: Multi-peak solutions for a wide class of singular perturbation problems (English summary). J. Lond. Math. Soc. 59(2), 585–606 (1999) · doi:10.1112/S002461079900719X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.