×

A geophysical-scale model of vertical natural convection boundary layers. (English) Zbl 1147.76034

Summary: A model is developed for turbulent natural convection in boundary layers formed next to isothermal vertical surfaces. A scaling analysis shows that the flow can be described by plume equations for an outer turbulent region coupled to a resolved near-wall laminar flow. On the laboratory scale, the inner layer is dominated by its own buoyancy and the Nusselt number scales as the one-third power of the Rayleigh number (\(Nu \propto Ra_z^{1/3}\)). This gives a constant heat flux, consistent with previous experimental and theoretical studies. On larger geophysical scales the buoyancy is strongest in the outer layer and the laminar layer is driven by the shear imposed on it. The predicted heat transfer correlation then has the Nusselt number proportional to the one-half power of Rayleigh number (\(Nu \propto Ra_z^{1/2}\)), so that a larger heat flux is predicted than might be expected from an extrapolation of laboratory-scale results. The criteria for transitions between flow regimes are consistent with a hierarchy of instabilities of the near-wall laminar flow, with a buoyancy-driven instability operating on the laboratory scale and a shear-driven instability operating on geophysical scales.

MSC:

76F35 Convective turbulence
76F40 Turbulent boundary layers
76R10 Free convection
76E06 Convection in hydrodynamic stability
86A05 Hydrology, hydrography, oceanography
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Linden, Perspectives in Fluid Mechanics pp 303– (2000)
[2] DOI: 10.1016/j.ocemod.2005.04.001 · doi:10.1016/j.ocemod.2005.04.001
[3] DOI: 10.1016/0017-9310(72)90068-3 · doi:10.1016/0017-9310(72)90068-3
[4] DOI: 10.1017/S002211207100226X · Zbl 0224.76037 · doi:10.1017/S002211207100226X
[5] DOI: 10.1016/0017-9310(79)90021-8 · Zbl 0398.76046 · doi:10.1016/0017-9310(79)90021-8
[6] Gebhart, Buoyancy Induced Flows and Transport pp 547– (1988)
[7] DOI: 10.1017/S0022112059000738 · Zbl 0086.40706 · doi:10.1017/S0022112059000738
[8] DOI: 10.1080/03091920500094456 · Zbl 1206.86021 · doi:10.1080/03091920500094456
[9] DOI: 10.1098/rsta.1920.0001 · doi:10.1098/rsta.1920.0001
[10] Schlichting, Boundary Layer Theory pp 452– (1968)
[11] DOI: 10.1016/S0735-1933(98)00092-X · doi:10.1016/S0735-1933(98)00092-X
[12] Ostrach, NACA-TN 2635 pp none– (1952)
[13] DOI: 10.1007/BF01579575 · Zbl 0197.25103 · doi:10.1007/BF01579575
[14] DOI: 10.1017/S0022112081002450 · doi:10.1017/S0022112081002450
[15] Morton, Proc. R. Soc. Lond. 234 pp 1– (1956)
[16] Incropera, Fundamentals of Heat and Mass Transfer (2002)
[17] DOI: 10.1175/1520-0485(1999)0292.0.CO;2 · doi:10.1175/1520-0485(1999)0292.0.CO;2
[18] DOI: 10.1017/S0022112005006300 · Zbl 1082.76094 · doi:10.1017/S0022112005006300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.