×

Applications of an explicit formula for the generalized Euler numbers. (English) Zbl 1145.11020

For real number \(x\) and positive integers \(n,k\), let \(E^{(x)}_{2n}\), \(s(n,k)\), \(T(n,k)\) denote the generalized Euler numbers, Stirling numbers and central factorial numbers, respectively. In the present paper under review, the authors prove an explicit formula for \(E^{(x)}_{2n}\) as follows: \[ E^{(x)}_{2n}=\sum_{i=1}^n\rho(n,i)x^i, \]
here
\[ \rho(n,k)=(-1)^k\sum_{j=k}^n\frac{(2j)!}{2^jj!}s(j,k)T(n,j). \]
By using this formula, they also obtain some interesting identities and congruences involving the higher-order Euler numbers, Stirling numbers, the central factorial numbers and values of the Riemann zeta function.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
11B73 Bell and Stirling numbers
11M38 Zeta and \(L\)-functions in characteristic \(p\)
11B83 Special sequences and polynomials
05A10 Factorials, binomial coefficients, combinatorial functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, 1953 · Zbl 0052.29502
[2] Luke, Y. L.: The Special Functions and Their Approximations, Vol. I, Academic Press, New York and London, 1969 · Zbl 0193.01701
[3] Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001 · Zbl 1014.33001
[4] Srivastava, H. M.: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Cambridge Philos. Soc., 129, 77–84 (2000) · Zbl 0978.11004 · doi:10.1017/S0305004100004412
[5] Srivastava, H. M.: Some simple algorithms for the evaluations and representations of the Riemann zeta function at positive integer arguments. J. Math. Anal, Appl., 246, 331–351 (2000) · Zbl 0957.11036 · doi:10.1006/jmaa.2000.6746
[6] Srivastava, H. M., Pintér, Á.: Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math. Lett., 17, 375–380 (2004) · Zbl 1070.33012 · doi:10.1016/S0893-9659(04)90077-8
[7] Zhang, W. P.: Some identities involving the Euler and the central factorial numbers. Fibonacci Quart., 36, 154–157 (1998) · Zbl 0919.11018
[8] Liu, G. D.: Summation and recurrence formula involving the central factorial numbers and zeta function. Appl. Math. Comput., 149, 175–186 (2004) · Zbl 1100.11027 · doi:10.1016/S0096-3003(02)00964-5
[9] Liu, G. D.: The generalized central factorial numbers and higher order Nörlund Euler-Bernoulli polynomials. Acta Mathematica Sinica, Chinese Series, 44, 933–946 (2001) · Zbl 1039.11008
[10] Liu, G. D.: The solution of problem for Euler numbers. Acta Mathematica Sinica, Chinese Series, 47, 825–828 (2004) · Zbl 1130.11308
[11] Liu, G. D.: On congruences of Euler numbers modulo and odd square. Fibonacci Quart., 43, 132–136 (2005) · Zbl 1165.11309
[12] Liu, G. D.: Congruences for higher-order Euler numbers. Proc. Japan Acad. Ser.A, 82, 30–33 (2006) · Zbl 1120.11011 · doi:10.3792/pjaa.82.30
[13] Nörlund, N. E.: Vorlesungenüber Differenzenrechnung, Springer-Verlag, Berlin 1924; Reprinted by Chelsea Publishing Company, Bronx, New York, 1954 · JFM 50.0315.02
[14] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions (Translated from the French by J. W. Nienhuys), Reidel, Dordrecht and Boston, 1974 · Zbl 0283.05001
[15] Jordan, C.: Calculus of Finite Differences, New York, Chelsea, 1965 · Zbl 0154.33901
[16] Riordan, J.: Combinatorial Identities, New York, Wiley, 1968 · Zbl 0194.00502
[17] Apostol, T. M.: Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976 · Zbl 0335.10001
[18] Berndt, B. C.: Classical theorems on quadratic residues. Enseign. Math. II, 22, 261–304 (1976) · Zbl 0337.10031
[19] Kummer, E. E.: Über eine allgemeine Eigenschaft der rationalen Entwickelungscoëfficienten einer bestimmten Gattung analytischer Functionen. J. Reine Angew. Math., 41, 368–372 (1851) · ERAM 041.1136cj · doi:10.1515/crll.1851.41.368
[20] Guy, R. K.: Unsolved problem in number theory, 2nd. ed., Springer-Verlag, New York, 1994 · Zbl 0805.11001
[21] Yuan, P. Z.: A conjecture on Euler numbers. Proc. Japan Acad. Ser.A, 80, 180–181 (2004) · Zbl 1080.11018 · doi:10.3792/pjaa.80.180
[22] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1990 · Zbl 0712.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.