×

Performance of gene selection and classification methods in a microarray setting: a simulation study. (English) Zbl 1138.62362

Summary: We investigated the performance of several classification methods for cDNA-microarrays. Via simulations, various experimental settings could be explored without having to conduct expensive microarray studies. For the selection of genes, on which classification was based, one particular method was applied. Gene selection is, however, a very important aspect of classification. We extend a previous study by considering several gene selection methods. Furthermore, the stability of the methods with respect to distributional assumptions is examined by also considering data simulated from a symmetric and asymmetric Laplace distribution, in addition to normally distributed microarray data.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62H30 Classification and discrimination; cluster analysis (statistical aspects)
68U20 Simulation (MSC2010)
92C40 Biochemistry, molecular biology

Software:

rda
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1093/bioinformatics/btg062 · doi:10.1093/bioinformatics/btg062
[2] DOI: 10.1093/bib/bbl016 · doi:10.1093/bib/bbl016
[3] DOI: 10.1093/bioinformatics/btg361 · doi:10.1093/bioinformatics/btg361
[4] Breiman L., Machine Learn. 24 pp 123– (1996)
[5] DOI: 10.1023/A:1010933404324 · Zbl 1007.68152 · doi:10.1023/A:1010933404324
[6] Breiman L., Classification and Regression Trees (1984) · Zbl 0541.62042
[7] Chai , H. , Domeniconi , C. ( 2004 ). An evaluation of gene selection methods for multi-class microarray data classification . In: Proc. 2nd European Workshop on data mining and Text Mining in Bioinformatics , pp. 3 – 10 .
[8] Cortes C., Machine Learn. 20 pp 273– (1995)
[9] DOI: 10.1093/bioinformatics/btf867 · doi:10.1093/bioinformatics/btf867
[10] DOI: 10.1093/bioinformatics/bth447 · doi:10.1093/bioinformatics/bth447
[11] DOI: 10.1186/1471-2105-7-3 · doi:10.1186/1471-2105-7-3
[12] DOI: 10.1198/016214502753479248 · Zbl 1073.62576 · doi:10.1198/016214502753479248
[13] Freund Y., J. Jap. Soc. Artif. Intell. 14 pp 771– (1999)
[14] DOI: 10.1093/biostatistics/kxj035 · Zbl 1170.62382 · doi:10.1093/biostatistics/kxj035
[15] DOI: 10.1089/10665270050514954 · doi:10.1089/10665270050514954
[16] DOI: 10.1016/j.csda.2004.03.017 · Zbl 1429.62252 · doi:10.1016/j.csda.2004.03.017
[17] DOI: 10.1089/1066527041410445 · doi:10.1089/1066527041410445
[18] Murthy S. K., J. Artif. Intell. Res. 2 pp 1– (1994)
[19] DOI: 10.1093/bioinformatics/18.1.39 · doi:10.1093/bioinformatics/18.1.39
[20] Purdom E., Statist. Applic. Genet. Molec. Biol. 4 pp 16– (2005)
[21] Ripley B. D., Pattern Recognition and Neural Networks (1996) · Zbl 0853.62046
[22] Smyth G. K., Statist. Applic. Genet. Molec. Biol. 3 pp 3– (2004)
[23] DOI: 10.1093/bioinformatics/bti033 · doi:10.1093/bioinformatics/bti033
[24] DOI: 10.1093/bioinformatics/btg179 · doi:10.1093/bioinformatics/btg179
[25] DOI: 10.1073/pnas.082099299 · doi:10.1073/pnas.082099299
[26] DOI: 10.1073/pnas.091062498 · Zbl 1012.92014 · doi:10.1073/pnas.091062498
[27] Van Breda S., J. Nutrition 135 pp 1879– (2005)
[28] Van Sanden S., Biocybernet. Biomed. Eng. 27 pp 15– (2007)
[29] DOI: 10.1089/106652701753307520 · doi:10.1089/106652701753307520
[30] DOI: 10.1006/mgme.2001.3193 · doi:10.1006/mgme.2001.3193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.