×

Integral type operators from mixed-norm spaces to \(\alpha\)-Bloch spaces. (English) Zbl 1131.47031

Let \(B=\{z\in\mathbb C^n:| z| <1\}\) and \(H(B)\) be the class of all holomorphic functions on the unit ball. For \(f\in H(B)\) with the Taylor expansion \(f(z)=\sum_{| \beta| \geq0}a_\beta z^\beta\), let \(\operatorname{Re} f(z)=\sum_{|\beta|\geq0}|\beta| a_\beta z^\beta\) be the radial derivative of \(f\), where \(\beta=(\beta_1, \beta_2,\dots,\beta_n)\) is a multi-index and \(z^\beta=z_1^{\beta_1}\ldots z_n^{\beta_n}\). Let \(\alpha>0\). The \(\alpha\)-Bloch space \(\mathcal{B}^\alpha=\mathcal{B}^\alpha(B)\) is the space of all holomorphic functions \(f\) on \(B\) such that \(b_\alpha(f)=\sup_{z\in B}(1-| z| ^2)^\alpha|\operatorname{Re} f(z)|<\infty\). Let \(\mathcal{B}_0^\alpha\) be the subspace of \(\mathcal B\) consisting of those \(f\in{\mathcal B}^\alpha\) for which \((1-| z|^2)^\alpha| \operatorname{Re} f(z)| \to0\) as \(| z|\to1\). This space is called the little \(\alpha\)-Bloch space. Let \(p,q\in[0,\infty)\) and \(\gamma>-1\). The mixed norm space \(H_{p,q,\gamma}(B)\) consists of all holomorphic functions \(f\) on the unit ball such that \[ \| f\| ^q_{H_{p,q,\gamma}}=\displaystyle\int_0^1 M_p^q(f, r)(1-r)^\gamma\,dr<\infty, \] where \(M_p(f, r)=(\int_{\partial B}| f(r\xi)| ^p\,d\sigma(\xi))^{1/p}\) and \(\partial B=\{z\in\mathbb C^n:| z| =1\}\). Let \(g: B\mapsto\mathbb C^1\) be a holomorphic map of \(B\). For any holomorphic function \(f: B\mapsto \mathbb C^1\) and \(z\in B\), define \[ T_gf(z)=\displaystyle\int_0^1 f(tz)\operatorname{Re} g(tz)\,\frac{dt}{t} \quad\text{and}\quad L_gf(z)=\displaystyle\int_0^1 \operatorname{Re} f(tz)g(tz)\frac{dt}{t}. \] In this paper, the authors obtain the boundedness and compactness of the operators \(T_g\) and \(L_g\) from \(H_{p,\,q,\,\gamma}\) to the \(\alpha\)-Bloch space \(\mathcal B^\alpha(B)\) and little \(\alpha\)-Bloch space \(\mathcal B_0^\alpha(B)\).

MSC:

47B38 Linear operators on function spaces (general)
30H05 Spaces of bounded analytic functions of one complex variable
47G10 Integral operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhu K., Graduate Texts in Mathematics 226 (2005)
[2] Hu Z. J., Acta Mathematica Scientia. Series B. English Edition 23 pp 561– (2003)
[3] DOI: 10.1016/j.jmaa.2004.01.045 · Zbl 1072.47029 · doi:10.1016/j.jmaa.2004.01.045
[4] DOI: 10.1155/JIA.2005.81 · Zbl 1074.47013 · doi:10.1155/JIA.2005.81
[5] DOI: 10.1007/BF02567392 · Zbl 0369.30012 · doi:10.1007/BF02567392
[6] Chang D. C., Taiwanese Journal of Mathematics 7 pp 423– (2003)
[7] DOI: 10.1002/mana.200310013 · Zbl 1024.47014 · doi:10.1002/mana.200310013
[8] Stević S., Bulletin of the Institute of Mathematics Academia Sinica 31 pp 135– (2003)
[9] DOI: 10.4171/ZAA/1138 · Zbl 1046.47026 · doi:10.4171/ZAA/1138
[10] Rudin W., Function Theory in the Unit Ball of \(\mathbb{C}\) n (1980) · Zbl 0495.32001
[11] Shields A. L., Transactions of the American Mathematical Society 162 pp 287– (1971)
[12] Cowen C. C., Studies in Advanced Mathematics (1995)
[13] DOI: 10.1216/rmjm/1181069993 · Zbl 1042.47018 · doi:10.1216/rmjm/1181069993
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.