×

On elimination of shear locking in the element-free Galerkin method. (English) Zbl 1128.74347

Summary: In this study, a method for completely eliminating the presence of transverse shear locking in the application of the element-free Galerkin method (EFGM) to shear-deformable beams and plates is presented. The matching approximation fields concept of Donning and Liu has shown that shear locking effects may be prevented if the approximate rotation fields are constructed with the innate ability to match the approximate slope (first derivative of displacement) fields and is adopted. Implementation of the matching fields concept requires the computation of the second derivative of the shape functions. Thus, the shape functions for displacement fields, and therefore the moving least-squares (MLS) weight function, must be at least \(C^1\) continuous. Additionally, the MLS weight functions must be chosen such that successive derivatives of the MLS shape function have the ability to exactly reproduce the functions from which they were derived. To satisfy these requirements, the quartic spline weight function possessing \(C^2\) continuity is used in this study. To our knowledge, this work is the first attempt to address the root cause of shear locking phenomenon within the framework of the element-free Galerkin method. Several numerical examples confirm that bending analyses of thick and thin beams and plates, based on the matching approximation fields concept, do not exhibit shear locking and provide a high degree of accuracy for both displacement and stress fields.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K20 Plates
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Belytschko, International Journal for Numerical Methods in Engineering 37 pp 229– (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[2] Lancaster, Mathematics of Computation 37 pp 141– (1981) · doi:10.1090/S0025-5718-1981-0616367-1
[3] Concepts and Applications of Finite Element Analysis, 2nd (edn). Wiley: New York, 1989.
[4] Krysl, Computer Methods in Applied Mechanics and Engineering 33 pp 3057– (1996)
[5] Application of element free Galerkin method to analysis of Mindlin type plate/shell problems. Proceedings of ICES97, 1997; 918-923.
[6] Noguchi, International Journal for Numerical Methods in Engineering 47 pp 1215– (2000) · Zbl 0970.74079 · doi:10.1002/(SICI)1097-0207(20000228)47:6<1215::AID-NME834>3.0.CO;2-M
[7] Garcia, International Journal for Numerical Methods in Engineering 47 pp 1381– (2000) · Zbl 0987.74067 · doi:10.1002/(SICI)1097-0207(20000320)47:8<1381::AID-NME833>3.0.CO;2-9
[8] Duarte, Numerical Methods for Partial Differential Equations 12 pp 673– (1996) · Zbl 0869.65069 · doi:10.1002/(SICI)1098-2426(199611)12:6<673::AID-NUM3>3.0.CO;2-P
[9] Kanok-Nukulchai, International Journal of Structures 1 pp 1– (1981)
[10] Zienkiewicz, International Journal for Numerical Methods in Engineering 3 pp 275– (1971) · Zbl 0253.73048 · doi:10.1002/nme.1620030211
[11] Hughes, International Journal for Numerical Methods in Engineering 11 pp 1529– (1977) · Zbl 0363.73067 · doi:10.1002/nme.1620111005
[12] Kanok-Nukulchai, International Journal for Numerical Methods in Engineering 14 pp 179– (1979) · Zbl 0394.73072 · doi:10.1002/nme.1620140204
[13] Kanok-Nukulchai, Computers and Structures 13 pp 19– (1981) · Zbl 0455.73073 · doi:10.1016/0045-7949(81)90105-X
[14] A treatment of hourglass mode in simple plate element for linear and nonlinear analyses. AIT Master Thesis, 1982.
[15] MacNeal, Computers and Structures 8 pp 175– (1978) · Zbl 0369.73085 · doi:10.1016/0045-7949(78)90020-2
[16] Hughes, Computers and Structures 9 pp 445– (1978) · Zbl 0394.73076 · doi:10.1016/0045-7949(78)90041-X
[17] Hughes, International Journal for Numerical Methods in Engineering 15 pp 1413– (1980) · Zbl 0437.73053 · doi:10.1002/nme.1620150914
[18] Hughes, Journal of Applied Mechanics 48 pp 587– (1981) · Zbl 0459.73069 · doi:10.1115/1.3157679
[19] Huang, Engineering and Computations 1 pp 369– (1984) · doi:10.1108/eb023593
[20] Bathe, International Journal for Numerical Methods in Engineering 21 pp 367– (1985) · Zbl 0551.73072 · doi:10.1002/nme.1620210213
[21] On the application of assumed strain methods. Proceedings of the 2nd East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-2), Chiang Mai, Thailand, January 11-13, 1989.
[22] Belytschko, International Journal for Numerical Methods in Engineering 20 pp 787– (1984) · Zbl 0528.73069 · doi:10.1002/nme.1620200502
[23] Belytschko, Computer Methods in Applied Mechanics and Engineering 51 pp 221– (1985) · Zbl 0581.73091 · doi:10.1016/0045-7825(85)90035-0
[24] Taylor, International Journal for Numerical Methods in Engineering 36 pp 3057– (1993) · Zbl 0781.73071 · doi:10.1002/nme.1620361803
[25] Xu, International Journal for Numerical Methods in Engineering 37 pp 1437– (1994) · Zbl 0805.73068 · doi:10.1002/nme.1620370902
[26] Belytschko, Computer Methods in Applied Mechanics and Engineering 113 pp 397– (1996)
[27] Donning, Computer Methods in Applied Mechanics and Engineering 152 pp 47– (1998) · Zbl 0959.74079 · doi:10.1016/S0045-7825(97)00181-3
[28] Liu, International Journal for Numerical Methods in Fluids 21 pp 901– (1995) · Zbl 0885.76078 · doi:10.1002/fld.1650211010
[29] Krysl, Computer Methods in Applied Mechanics and Engineering 17 pp 26– (1995)
[30] Theory of Plates and Shells, 2nd (edn). McGraw-Hill: New York, 1959.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.