×

Subgrid stabilized projection method for 2D unsteady flows at high Reynolds numbers. (English) Zbl 1121.76036

Summary: A subgrid stabilization technique is developed for solving two-dimensional incompressible Navier-Stokes equations at high Reynolds numbers. The time marching algorithm is based on a well-established fractional-step pressure-correction projection method. The advection-diffusion step is enriched by an implicit subgrid stabilizing term and by an explicit dissipative shock capturing term. The former is calculated by means of a hierarchical finite element setting, the latter is included to avoid Gibbs’ phenomenon in the boundary layer. Convergence tests on prototypical two-dimensional examples are reported, and the method is used to simulate viscous incompressible flows around the airfoil NACA0012 at zero incidence and Reynolds numbers ranging from \(10^{5}\) to \(10^{6}\).

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baiocchi, C.; Brezzi, F.; Franca, L. P., Virtual bubbles and Galerkin-least-squares type methods (GaLS), Comput. Methods Appl. Mech. Engrg., 105, 125-141 (1993) · Zbl 0772.76033
[2] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[3] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 745-762 (1968) · Zbl 0198.50103
[4] Chorin, A. J., On the convergence of discrete approximations to the Navier-Stokes equations, Math. Comput., 23, 341-353 (1969) · Zbl 0184.20103
[5] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., (Discontinuous Galerkin Methods—Theory, Computation and Applications. Discontinuous Galerkin Methods—Theory, Computation and Applications, Lecture Notes in Computer Science and Engineering, vol. 11 (2000), Springer)
[6] Drela, M.; Giles, M. B., Viscous-inviscid analysis of transonic and low Reynolds number airfoils, AIAA J., 25, 10, 1347-1355 (1987) · Zbl 0635.76057
[7] Ern, A.; Guermond, J.-L., (Theory and Practice of Finite Elements. Theory and Practice of Finite Elements, Series on Applied Mathematical Sciences, vol. 159 (2004), Springer-Verlag: Springer-Verlag Berlin)
[8] Guermond, J.-L., Stabilization of Galerkin approximations of transport equations by subgrid modeling, M2AN Math. Model. Numer. Anal., 33, 6, 1293-1316 (1999) · Zbl 0946.65112
[9] Guermond, J.-L., Subgrid stabilization of Galerkin approximations of linear contraction semi-groups of class \(C^0\) in Hilbert spaces, Numer. Methods Partial Diff. Equ., 17, 1-25 (2001) · Zbl 0967.65067
[10] Guermond, J.-L.; Quartapelle, L., On the approximation of the unsteady Navier-Stokes equations by finite element projection methods, Numer. Math., 80, 207-238 (1998) · Zbl 0914.76051
[11] Guermond, J.-L.; Shen, J., On the error estimates for the rotational pressure-correction projection methods, Math. Comput., 73, 248, 1719-1737 (2004), (electronic) · Zbl 1093.76050
[12] Hughes, T. J.R.; Feijóo, G. R.; Mazzei, L.; Quincy, J., The variational multiscale method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[13] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/Least-Squares method for advection-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173-189 (1989) · Zbl 0697.76100
[14] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics. IV. A discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 329-336 (1986) · Zbl 0587.76120
[15] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 45, 285-312 (1984) · Zbl 0526.76087
[16] Johnson, C.; Szepessy, A.; Hansbo, P., On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comput., 54, 189, 107-129 (1990) · Zbl 0685.65086
[17] Kraichnan, R. H., Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 1417-1423 (1967)
[18] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, second English ed., revised and enlarged, Translated from the Russian by Richard A. Silverman and John Chu, Mathematics and its Applications, vol. 2. Gordon and Breach Science Publishers, New York, 1969.; O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, second English ed., revised and enlarged, Translated from the Russian by Richard A. Silverman and John Chu, Mathematics and its Applications, vol. 2. Gordon and Breach Science Publishers, New York, 1969.
[19] Lesaint, P.; Raviart, P.-A., On a finite element method for solving the neutron transport equation, (de Boors, C., Mathematical Aspects of Finite Elements in Partial Differential Equations (1974), Academic Press), 89-123
[20] LeVeque, R. J., (Numerical Methods for Conservation Laws. Numerical Methods for Conservation Laws, Lectures in Mathematics ETH Zürich (1990), Birkhäuser Verlag: Birkhäuser Verlag Basel) · Zbl 0723.65067
[21] Marra, A.; Mola, A.; Quartapelle, L.; Riviello, L., Calculation of impulsively started incompressible viscous flows, Int. J. Numer. Methods Fluids, 46, 877-902 (2004) · Zbl 1060.76575
[22] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.; W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.
[23] Rudin, W., Analyse réelle et complexe (1987), Masson: Masson Paris, fourth ed · Zbl 1147.26300
[24] Schlichting, H., Boundary layer theory, (Kestin, J., McGraw-Hill Series in Mechanical Engineering (1960), McGraw-Hill Book Co., Inc.: McGraw-Hill Book Co., Inc. New York), Translated by · Zbl 0099.20603
[25] Temam, R., Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires ii, Arch. Rat. Mech. Anal., 33, 377-385 (1969) · Zbl 0207.16904
[26] Temam, R., (Navier-Stokes Equations. Navier-Stokes Equations, Studies in Mathematics and its Applications, vol. 2 (1977), North-Holland) · Zbl 0335.35077
[27] Timmermans, L. J.P.; Minev, P. D.; van de Vosse, F. N., An approximate projection scheme for incompressible flow using spectral elements, Int. J. Numer. Methods Fluids, 22, 673-688 (1996) · Zbl 0865.76070
[28] Yosida, K., (Functional Analysis, Classics in Mathematics (1995), Springer-Verlag: Springer-Verlag Berlin, Germany), Reprint of the sixth (1980) edition · Zbl 0152.32102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.