×

Mechanical properties of nanostructure of biological materials. (English) Zbl 1115.74348

Summary: Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

MSC:

74L15 Biomechanical solid mechanics
74M25 Micromechanics of solids
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bao, G.; Suo, Z., Remarks on crack-bridging concepts, Appl. Mech. Rev., 45, 8, 355-366 (1992)
[2] Bazant, Z. P.; Planas, J., Fracture and Size Effect in Concrete and other Quasibrittle Materials (1998), CRC Press: CRC Press Boca Raton, FL
[3] Bundy, K. J., Determination of mineral-organic bonding effectiveness in bone—theoretical considerations, Ann. Biomed. Eng., 13, 119-135 (1985)
[4] Currey, J. D., Mechanical properties of mother of pearl in tension, Proc. R. Soc. London. B, 196, 443-463 (1977)
[5] Currey, J.D., 1984. The Mechanical Adaptations of Bones. Princeton University Press, Princeton, NJ, pp. 24-37.; Currey, J.D., 1984. The Mechanical Adaptations of Bones. Princeton University Press, Princeton, NJ, pp. 24-37.
[6] Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Solids., 8, 100-104 (1960)
[7] de Gennes, P. G., Soft Adhesives, Langmuir, 12, 4497-4500 (1996)
[8] Eshelby, J. D., Energy relations and the energy momentum tensor in continuum mechanics, (Kanninen, M. F.; Alder, W. F.; Rosenfield, A. R.; Jaffe, R. I., Inelastic Behavior of Solids (1970), McGraw-Hill: McGraw-Hill New York) · Zbl 0323.73011
[9] Ferry, J. D., Viscoelastic Properties of Polymers (1980), Wiley: Wiley New York
[10] Fratzl, P.; Fratzl-Zelman, N.; Klaushofer, K.; Vogl, G.; Koller, K., Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering, Calcif. Tissue Int., 48, 407-413 (1991)
[11] Fratzl, P.; Groschner, M.; Vogl, G.; Plenk, H.; Eschberger, J.; Fratzl-Zelman, N.; Koller, K.; Klaushofer, K., Mineral crystals in calcified tissuesa comparative study by SAXS, J. Bone Miner. Res., 7, 329-334 (1992)
[12] Fratzl, P.; Schreiber, S.; Klaushofer, K., Bone mineralization as studied by small-angle X-ray scattering, Conn. Tissue Res., 35, 1-4, 9-16 (1996)
[13] Fratzl, P.; Paris, O.; Klaushofer, K.; Landis, W. J., Bone mineralization in an osteogenesis imperfecta mouse model studied by small angle X-ray scattering, J. Clin. Invest., 97, 396-402 (1996)
[14] Fratzl, P.; Jakob, H. F.; Rinnerthaler, S.; Roschger, P.; Klaushofer, K., Position resolved small-angle X-ray scattering of complex biological materials, J. Appl. Cryst., 30, 765-769 (1997)
[15] Frost, H. M., Bone microdamage: factors that impair its repair, (Uhtoff, H. D., Current Concepts of Bone Fragility (1985), Springer: Springer Berlin), 123-148
[16] Gao, H.; Ji, B., Modeling fracture in nanomaterials via a virtual internal bond method, Eng. Fract. Mech., 70, 1777-1791 (2003)
[17] Gao, H.; Klein, P., Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds, J. Mech. Phys. Solids., 46, 187-218 (1998) · Zbl 0974.74008
[18] Gao, H.; Ji, B.; Jäger, I. L.; Arzt, E.; Fratzl, P., Materials become insensitive to flaws at nanoscalelessons from nature, Proc. Natl. Acad. Sci. USA., 100, 5597-5600 (2003)
[19] Gao, H., Ji, B., Buehler, M.J., Yao, H., 2004. Flaw tolerant bulk and surface nanostructures of biological systems. Mechan. Chem. Biosystems, 1, 37-52.; Gao, H., Ji, B., Buehler, M.J., Yao, H., 2004. Flaw tolerant bulk and surface nanostructures of biological systems. Mechan. Chem. Biosystems, 1, 37-52.
[20] Hasegawa, K.; Turner, C. H.; Burr, D. B., Contribution of collagen and mineral to the elastic anisotropy of bone, Calcif. Tissue Int., 55, 381-386 (1994)
[21] Hodge, A. J.; Petruska, J. A., Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule, (Ramachandran, G. N., Aspects of Protein Structure (1963), Academic Press: Academic Press New York), 289-300
[22] Hui, C.-Y.; Xu, D.-B.; Kramer, E. J., A fracture model for a weak interface in a viscoelastic material (small scale yielding analysis), J. Appl. Phys., 72, 8, 3294-3304 (1992)
[23] Jackson, A. P.; Vincent, J. F.V.; Turner, R. M., The mechanical design of nacre, Proc. R. Soc. London. B, 234, 415-440 (1988)
[24] Jäger, I.; Fratzl, P., Mineralized collagen fibrilsa mechanical model with a staggered arrangement of mineral particles, Biophys. J., 79, 1737-1746 (2000)
[25] Ji, B.; Gao, H., A study of fracture mechanisms in biological nano-composites via the virtual internal bond model, Mater. Sci. Eng. A, 366, 96-103 (2004)
[26] Kamat, S.; Su, X.; Ballarini, R.; Heuer, A. H., Structural basis for the fracture toughness of the shell of the conch Strombus gigas, Nature, 405, 1036-1040 (2000)
[27] Kessler, H.; Ballarini, R.; Mullen, R. L.; Kuhn, L. T.; Heuer, A. H., A biomimetic example of brittle toughening(I) steady state multiple cracking, Comput. Mater. Sci., 5, 157-166 (1996)
[28] Klein, P.; Gao, H., Crack nucleation and growth as strain localization in a virtual-bond continuum, Eng. Fract. Mech., 61, 21-48 (1998)
[29] Klein, P. A.; Foulk, J. W.; Chen, E. P.; Wimmer, S. A.; Gao, H., Physics-based modeling of brittle fracturecohesive formulations and the application of meshfree methods, Theor. Appl. Fract. Mech., 37, 99-166 (2001)
[30] Lakes, R., Viscoelastic properties of cortical bone, (Cowin, S. C., Bone Mechanics Handbook (2001), CRC press: CRC press New York)
[31] Landis, W. J., The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix, Bone, 16, 533-544 (1995)
[32] Landis, W. J.; Hodgens, K. J., Mineralization of collagen may occur on fibril surfacesevidence from conventional and high voltage electron microscopy and three dimensional imaging, J. Struct. Biol., 117, 24-35 (1996)
[33] Landis, W. J.; Song, M. J.; Leith, A.; McEwen, L.; McEwen, B. F., Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction, J. Struct. Biol., 110, 39-54 (1993)
[34] Marshall, G. W.; Marshall, S. J.; Kinney, J. H.; Balooch, M., The dentine substratestructure and properties related to bonding, J. Dent., 25, 441-458 (1997)
[35] Menig, R.; Meyers, M. H.; Meyers, M. A.; Vecchio, K. S., Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells, Acta mater., 48, 2383-2398 (2000)
[36] Menig, R.; Meyers, M. H.; Meyers, M. A.; Vecchio, K. S., Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells, Mater. Sci. Eng., A297, 203-211 (2001)
[37] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 571-574 (1973)
[38] Norman, T. L.; Wang, Z., Microdamage of human cortical boneincidence and morphology in long bones, Bone, 20, 375-379 (1997)
[39] Norman, T. L.; Vashishth, D.; Burr, D. B., Fracture toughness of human bone under tension, J. Biomech., 28, 309-320 (1995)
[40] Okumura, K.; de Gennes, P.-G., Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures, Eur. Phys. J. E, 4, 121-127 (2001)
[41] Paris, O.; Zizak, I.; Lichtenegger, H.; Roschger, P.; Klaushofer, K.; Fratzl, F., Analysis of the hierarchical structure of bio-logical tissues by scanning X-ray scattering using a microbeam, Cell Mol. Biol., 46, 993-1004 (2000)
[42] Pidaparti, R. M.; Chandran, A.; Takano, Y.; Turner, C. H., Bone mineral lies mainly outside collagen fibrilspredictions of a composite model for osteonal bone, J. Biomech., 29, 909-916 (1996)
[43] Rahulkumar, P.; Jagota, A.; Bennison, S. J.; Saigal, S., Cohesive element modeling of viscoelastic fractureapplication to peel testing of polymers, Int. J. Solids Struct., 37, 1873-1897 (2000) · Zbl 1090.74676
[44] Rho, J. Y.; Kuhn-Spearing, L.; Zioupos, P., Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys., 20, 92-102 (1998)
[45] Rice, J. R., A path independent integral and the approximate analysis of stress concentration by notches and cracks, J. Appl. Mech., 35, 379-386 (1968)
[46] Rinnerthaler, S.; Roschger, P.; Jakob, H. F.; Nader, A.; Klaushofer, K.; Fratzl, P., Scanning small angle X-ray scattering analyses of human bone, Calcif. Tissue Int., 64, 422-429 (1999)
[47] Roschger, P.; Grabner, B. M.; Rinnerthaler, S.; Tesch, W.; Kneissel, M.; Berzlanovich, A.; Klaushofer, K.; Fratzl, P., Structural development of the mineralized tissue in the human L4 vertebral body, J. Struct. Biol., 136, 126-136 (2001)
[48] Sasaki, N.; Yoshikawa, M.; Enyo, A., Stress relaxation function of bone and bone collagen, J. Biomech., 26, 1369-1376 (1993)
[49] Smith, B. L.; Schaeffer, T. E.; Viani, M.; Thompson, J. B.; Frederick, N. A.; Kindt, J.; Belcher, A.; Stucky, G. D.; Morse, D. E.; Hansma, P. K., Molecular mechanistic origin of the toughness of natural adhesive, fibres and composites, Nature, 399, 761-763 (1999)
[50] Suo, Z.; Ho, S.; Gong, X., Notch ductile-to-brittle transition due to localized inelastic band, J. Eng. Mater. Technol., 115, 319-326 (1993)
[51] Tesch, W.; Eidelman, N.; Roschger, P.; Goldenberg, F.; Klaushofer, K.; Fratzl, P., Graded microstructure and mechanical properties of human crown dentin, Calcif. Tissue Int., 69, 147-157 (2001)
[52] Thompson, J. B.; Kindt, J. H.; Drake, B.; Hansma, H. G.; Morse, D. E.; Hansma, P. K., Bone indentation recovery time correlates with bond reforming time, Nature, 414, 773-776 (2001)
[53] Turner, C. H.; Burr, D. B., Orientation of collagen in osteonal bone [letter], Calcif. Tissue Int., 60, 90-90 (1997)
[54] Turner, C. H.; Chandran, A.; Pidaparti, R. M.V., The anisotropy of osteonal bone and its ultrastructural implications, Bone, 17, 85-89 (1995)
[55] Wang, R. Z.; Suo, Z.; Evans, A. G.; Yao, N.; Aksay, I. A., Deformation mechanisms in nacre, J. Mater. Res., 16, 2485-2493 (2001)
[56] Warshawsky, H., Organization of crystals in enamel, Anat. Rec., 224, 242-262 (1989)
[57] Weiner, S.; Wagner, H. D., The material bonestructure-mechanical function relations, Ann. Rev. Mater. Res., 28, 271-298 (1998)
[58] Weiner, S.; Veis, A.; Beniash, E.; Arad, T.; Dillon, J. W.; Sabsay, B.; Siddiqui, F., Peritubular dentin formation: crystal organization and the macromolecular constituents in human teeth, J. Struct. Biol., 126, 27-41 (1999)
[59] Williams, R. J.P., The functional forms of biominerals, (Mann, S.; Webb, J.; William, R. J.P., Biomineralization: Chemical and Biochemical Perspectives (1989), VCH: VCH New York)
[60] Zhang, P.; Klein, P.; Huang, Y.; Gao, H.; Wu, P. D., Numerical simulation of cohesive fracture by the Virtual-Internal-Bond model, Comput. Mod. Eng. Sci., 3, 263-289 (2002) · Zbl 1066.74008
[61] Zhao, Y. H.; Weng, G. J., Plasticity of a two-phase composite with partially debonded inclusions, Int. J. Plast., 12, 781-804 (1996) · Zbl 0885.73043
[62] Zhao, Y. H.; Tandon, G. P.; Weng, G. J., Elastic-moduli for a class of porous materials, Acta Mech., 76, 105-130 (1989) · Zbl 0664.73076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.