×

Weyl–Titchmarsh theory for a class of discrete linear Hamiltonian systems. (English) Zbl 1100.39020

Author’s abstract: This paper is concerned with establishing the Weyl-Titchmarsh theory for a class of discrete linear Hamiltonian systems over a half-line. Fundamental properties of solutions, regular spectral problems, and the corresponding maximal and minimal operators are first studied. Matrix disks are constructed and proved to be nested and converge to a limiting set. Some precise relationships among the rank of the matrix radius of the limiting set, the number of linearly independent square summable solutions, and the defect indices of the minimal operator are established. Based on the above results, a classification of singular discrete linear Hamiltonian systems is given in terms of the defect indices of the minimal operator, and several equivalent conditions on the cases of limit point and limit circle are obtained, respectively.
Especially, several problems in the limit point case are more carefully investigated, including fundamental properties of square summable solutions, properties of the Weyl function, which is the unique element in the limiting set in this case, and inhomogeneous boundary problems, self-adjointness of the corresponding Hamiltonian operator, relationship between the spectrum of the Hamiltonian operator and the analyticity of the Weyl function, as well as the dependence of the spectrum on the boundary data, in which some interesting separation results for the spectrum are obtained. Finally, another set of four equivalent conditions on the limit point case are established.

MSC:

39A12 Discrete version of topics in analysis
39A10 Additive difference equations
34B20 Weyl theory and its generalizations for ordinary differential equations
34B27 Green’s functions for ordinary differential equations
47A10 Spectrum, resolvent
47B39 Linear difference operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahlbrandt, C. D., Equivalence of discrete Euler equations and discrete Hamiltonian systems, J. Math. Anal. Appl., 180, 498-517 (1993) · Zbl 0802.39005
[2] Ahlbrandt, C. D.; Peterson, A. C., Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations (1996), Kluwer Academic Publishers: Kluwer Academic Publishers the Netherlands · Zbl 0860.39001
[3] Arnold, V. A., Mathematical Methods of Classical Mechanics (1983), Springer-verlag: Springer-verlag New York
[4] Atkinson, F. V., Discrete and Continuous Boundary Problems (1964), Academic Press, Inc.: Academic Press, Inc. New York · Zbl 0117.05806
[5] Bohner, M., Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions, J. Math. Anal. Appl., 199, 804-826 (1996) · Zbl 0855.39018
[6] Bohner, M.; Došlý, O., Disconjugacy and transformations for symplectic systems, Rocky Mountain J. Math., 27, 707-743 (1997) · Zbl 0894.39005
[7] Bohner, M.; Došlý, O.; Kratz, W., An oscillation theorem for discrete eigenvalue problems, Rocky Mountain J. Math., 33, 1233-1260 (2003) · Zbl 1060.39003
[8] Bohner, M.; Došlý, O., Oscillation of symplectic dynamic systems, ANZIAM J., 46, 1, 17-32 (2004) · Zbl 1053.34032
[9] Chaudhuri, J.; Everitt, W. N., On the spectrum of ordinary second order differential operators, Proc. Roy. Soc. Edin., 68A, 95-119 (1968) · Zbl 0194.17104
[10] Chen, S., Disconjugacy, disfocality, and oscillation of second order difference equations, J. Differ. Equations, 107, 383-394 (1994) · Zbl 0791.39001
[11] Chen, S.; Erbe, L. H., Oscillation results for second scalar and matrix difference equations, Comput. Math. Appl., 28, 55-69 (1994) · Zbl 0807.39003
[12] Chen, S.; Erbe, L. H., Oscillation and nonoscillation for systems of self-adjoint second order difference equations, SIAM J. Math. Anal., 20, 939-949 (1989) · Zbl 0687.39001
[13] Chen, J.; Shi, Y., The limit circle and limit point criteria for second order linear difference equations, Comput. Math. Appl., 47, 967-976 (2004) · Zbl 1073.39011
[14] Clark, S. L., A criterion for absolute continuity of the continuous spectrum of a Hamiltonian system, J. Math. Anal. Appl., 151, 108-128 (1990) · Zbl 0735.34067
[15] Clark, S. L., On the absolutely continuous spectrum of a vector-matrix Dirac system, Proc. Roy. Soc. Edin., 124A, 253-262 (1994) · Zbl 0805.34078
[16] Clark, S. L., A spectral analysis for self-adjoint operators generated by a class of second order difference equations, J. Math. Anal. Appl., 197, 267-285 (1996) · Zbl 0857.39008
[18] Clark, S.; Gesztesy, F., On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems, J. Comput. Appl. Math., 171, 151-184 (2004) · Zbl 1065.39027
[19] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1955), McGraw-Hill: McGraw-Hill New York · Zbl 0042.32602
[20] Courant, R.; Hilbert, D., Methods of Mathematics Physics I (1953), Interscience · Zbl 0729.00007
[21] Došlý, O., Oscillation criteria for higher order Sturm-Liouville difference equations, J. Differ. Equat. Appl., 4, 425-450 (1998) · Zbl 0921.39005
[22] Dunford, N.; Schwartz, J. T., Linear Operators (II) (1963), Wiley-Interscience: Wiley-Interscience New York
[23] Erbe, L. H.; Yan, P., Disconjugacy for linear Hamiltonian difference systems, J. Math. Anal. Appl., 167, 353-367 (1992) · Zbl 0762.39003
[24] Feng, K., On difference schemes and symplectic geometry, (Computation of Partial Differential Equations (1985), Science Press: Science Press Beijing) · Zbl 0659.65118
[25] Feng, K.; Wang, D., A note on conservation laws of symplectic difference schemes for Hamiltonian systems, J. Comput. Math., 9, 229-237 (1991) · Zbl 0745.65047
[26] Harris, B. J., The limit circle criteria for second order differential expressions, Quart. J. Math. Oxford, 35, 2, 415-427 (1984) · Zbl 0558.34030
[27] Hartman, P., Difference equations: disconjugacy, principal solutions, Green’s functions, complete monotonicity, Trans. Amer. Math. Soc., 246, 1-30 (1978) · Zbl 0409.39001
[28] Hille, E., Lectures on Ordinary Differential Equations (1969), Addison-Wesley: Addison-Wesley London · Zbl 0179.40301
[29] Hinton, D. B.; Lewis, R. T., Spectral analysis of second order difference equations, J. Math. Anal. Appl., 63, 421-438 (1978) · Zbl 0392.39001
[30] Hinton, D. B.; Shaw, J. K., On Titchmarsh-Weyl \(M(λ)\)-functions for linear Hamiltonian systems, J. Differ. Equations, 40, 316-342 (1981) · Zbl 0472.34014
[31] Hinton, D. B.; Shaw, J. K., On the spectrum of a singular Hamiltonian system, Quaestion. Math., 5, 29-81 (1982) · Zbl 0509.34018
[32] Hinton, D. B.; Shaw, J. K., Hamiltonian systems of limit point or limit circle type with both endpoints, J. Differ. Equations, 50, 444-464 (1983) · Zbl 0476.34027
[33] Hinton, D. B.; Shaw, J. K., On boundary value problems for Hamiltonian systems with two singular points, SIAM J. Math. Anal., 15, 272-285 (1984) · Zbl 0539.34016
[34] Hinton, D. B.; Shaw, J. K., Absolutely continuous spectrum of Dirac systems with long range, short range, and oscillatory potentials, Quart. J. Math. Oxford, 62, 2, 183-213 (1985) · Zbl 0571.34017
[35] Jirari, A., Second-order Sturm-Liouville difference equations and orthogonal polynomials, Memoirs Amer. Math. Soc., 113 (1995) · Zbl 0817.39004
[36] Kauffman, R. M.; Read, T. T.; Zettl, A., The Deficiency Index Problem for Powers of Ordinary Differential Expressions, Lecture Notes in Math., vol. 621 (1977), Springer-Verlag: Springer-Verlag Berlin · Zbl 0367.34014
[37] Kim, C. S., Spectral theory for a singular linear system of Hamiltonian differential equations, J. Differ. Equations, 10, 538-567 (1971) · Zbl 0211.11303
[38] Kodaira, K., On ordinary differential equations of any even order and the corresponding eigenfunction expansions, Amer. J. Math., 72, 502-544 (1950) · Zbl 0054.03903
[39] Krall, A. M., \(M(λ)\) theory for singular Hamiltonian systems with one singular point, SIAM J. Math. Anal., 20, 664-700 (1989) · Zbl 0683.34008
[40] Krall, A. M., \(M(λ)\) theory for singular Hamiltonian systems with two singular points, SIAM J. Math. Anal., 20, 701-715 (1989) · Zbl 0694.34013
[41] Krall, A. M., Limit-point criterion for linear Hamiltonian systems, Appl. Anal., 61, 115-119 (1996) · Zbl 0876.34027
[42] Kratz, W.; Peyerimhoff, A., A treatment of Sturm-Liouville eigenvalue problems via Picone’s identity, Analysis, 5, 97-152 (1985) · Zbl 0541.34013
[43] Kratz, W., Quadratic Functionals in Variational Analysis and Control Theory (1995), Akademie Verlag GmbH: Akademie Verlag GmbH Berlin · Zbl 0842.49001
[44] McLeod, J. B., The number of integrable-square solutions of ordinary differential equations, Quart. J. Math. Oxford, 17, 2, 285-290 (1966) · Zbl 0148.06003
[45] Meyer, K. R.; Hall, G. R., Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, Applied Mathematical Sciences, vol. 90 (1992), Springer-Verlag: Springer-Verlag New York · Zbl 0743.70006
[46] Mingarelli, A. B., A limit-point criterion for a three-term recurrence relation, CR Math. Rep. Acad. Sci. Canada, 3, 171-175 (1981) · Zbl 0497.39002
[48] Peterson, A.; Ridenhour, J., Oscillation of second order linear matrix difference equations, J. Differ. Equations, 89, 69-88 (1991) · Zbl 0762.39005
[49] Reid, W. T., Sturmiam Theory of Ordinary Differential Equations (1980), Springer-Verlag: Springer-Verlag New York
[50] Remling, C., The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials, Commun. Math. Phys., 193, 151-170 (1998) · Zbl 0908.34067
[51] Shi, Y.; Chen, S., Spectral theory of second order vector difference equations, J. Math. Anal. Appl., 239, 195-212 (1999) · Zbl 0934.39002
[52] Shi, Y.; Chen, S., Spectral theory of higher-order discrete vector Sturm-Liouville problems, Linear Algebra Appl., 323, 7-36 (2001) · Zbl 0977.39010
[53] Shi, Y., Symplectic structure of discrete Hamiltonian systems, J. Math. Anal. Appl., 266, 472-478 (2002) · Zbl 1005.37022
[54] Shi, Y., Spectral theory for a class of discrete linear Hamiltonian systems, J. Math. Anal. Appl., 289, 554-570 (2004) · Zbl 1047.39016
[55] Shi, Y., On the rank of the matrix radius of the limiting set for a singular linear Hamiltonian system, Linear Algebra Appl., 376, 109-123 (2004) · Zbl 1047.37041
[57] Stewart, G. W., Introduction to Matrix Computation (1973), Academic Press: Academic Press New York · Zbl 0302.65021
[58] Titchmarsh, E. C., Eigenfunction Expansions (1962), Oxford University Press: Oxford University Press Oxford · Zbl 0099.05201
[59] Weidmann, J., Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics, vol. 1258 (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0647.47052
[60] Weidmann, J., Linear Operators in Hilbert Spaces (1980), Springer-Verlag: Springer-Verlag New York
[61] Weyl, H., Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen, Math. Ann., 68, 220-269 (1910) · JFM 41.0343.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.