×

Two-dimensional dilatonic black holes and Hawking radiation. (English) Zbl 1083.83532

Summary: Hawking radiation emanating from two-dimensional charged and uncharged dilatonic black holes — dimensionally reduced from \((2+1)\) spinning and spinless, respectively, BTZ black holes — is viewed as a tunneling process. Two-dimensional dilatonic black holes (AdS(2) included) are treated as dynamical background in contrast to the standard methodology where the background geometry is fixed when evaluating Hawking radiation. This modification to the geometry gives rise to a nonthermal part in the radiation spectrum. Nonzero temperature of the extremal two-dimensional charged black hole is found. The Bekenstein–Hawking area formula is easily derived for these dynamical geometries.

MSC:

83C57 Black holes
83C80 Analogues of general relativity in lower dimensions
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1103/PhysRevLett.69.1849 · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[2] Bañados M., Phys. Rev. 48 pp 1506– (1993) · doi:10.1103/PhysRevA.48.1506
[3] DOI: 10.1016/S0370-2693(97)01125-8 · doi:10.1016/S0370-2693(97)01125-8
[4] DOI: 10.4310/ATMP.1998.v2.n2.a1 · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[5] DOI: 10.1103/PhysRevLett.83.3370 · Zbl 0946.81063 · doi:10.1103/PhysRevLett.83.3370
[6] DOI: 10.1103/PhysRevLett.83.4690 · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[7] DOI: 10.1088/1126-6708/1999/02/011 · Zbl 0956.83052 · doi:10.1088/1126-6708/1999/02/011
[8] DOI: 10.1088/1126-6708/1999/11/021 · Zbl 0955.83016 · doi:10.1088/1126-6708/1999/11/021
[9] DOI: 10.1007/BF02345020 · Zbl 1378.83040 · doi:10.1007/BF02345020
[10] Keski-Vakkuri E., Phys. Rev. 54 pp 7407– (1996)
[11] DOI: 10.1016/0550-3213(94)00411-7 · doi:10.1016/0550-3213(94)00411-7
[12] DOI: 10.1016/0550-3213(94)00588-6 · doi:10.1016/0550-3213(94)00588-6
[13] DOI: 10.1016/S0550-3213(97)00085-0 · doi:10.1016/S0550-3213(97)00085-0
[14] DOI: 10.1103/PhysRevLett.85.5042 · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[15] Kwon Y., IL Nuovo Cimento 115 pp 469– (2000)
[16] Hemming S., Phys. Rev. 64 pp 044006– (2001)
[17] DOI: 10.1016/S0370-2693(01)00242-8 · Zbl 0977.83041 · doi:10.1016/S0370-2693(01)00242-8
[18] Maldacena J., Phys. Rev. 55 pp 861– (1997) · doi:10.1103/PhysRevA.55.R861
[19] DOI: 10.1016/S0370-1573(99)00083-6 · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[20] Achúcarro A., Phys. Rev. 48 pp 3600– (1993) · doi:10.1103/PhysRevB.48.3600
[21] DOI: 10.1103/PhysRevLett.73.1468 · Zbl 1020.83615 · doi:10.1103/PhysRevLett.73.1468
[22] DOI: 10.1016/0370-2693(95)00374-T · doi:10.1016/0370-2693(95)00374-T
[23] Kumar A., Phys. Rev. 51 pp 5954– (1995)
[24] DOI: 10.1016/S0370-2693(99)00856-4 · Zbl 0992.83046 · doi:10.1016/S0370-2693(99)00856-4
[25] Bekenstein J. D., Phys. Rev. 7 pp 2333– (1973) · doi:10.1103/PhysRevB.7.2333
[26] Bekenstein J. D., Phys. Rev. 9 pp 3292– (1974) · doi:10.1103/PhysRevB.9.3292
[27] Hawking S. W., Phys. Rev. 13 pp 191– (1976)
[28] DOI: 10.1088/1126-6708/1998/02/009 · Zbl 0955.83010 · doi:10.1088/1126-6708/1998/02/009
[29] Painlevé P., Acad. Sci. (Paris) 173 pp 677– (1921)
[30] DOI: 10.1142/S0217732394003567 · Zbl 1015.83501 · doi:10.1142/S0217732394003567
[31] Gour G., Phys. Rev. 63 pp 064005– (2001)
[32] DOI: 10.1142/S0218271801000937 · Zbl 1155.83347 · doi:10.1142/S0218271801000937
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.