×

A system of four matrix equations over von Neumann regular rings and its applications. (English) Zbl 1083.15021

The author considers the following matrix systems over a von Neumann regular ring \(R\) with unity (i.e. for each \(a\in R\) there exists \(b\in R\) such that \(aba=a\)): (*) \(A_1X=C_1\), \(XB_2=C_2\), \(A_3XB_3=C_3\), \(A_4XB_4=C_4\); (**) \(A_1X=C_1\), \(A_3X=C_3\); (***) \(A_1X=C_1\), \(A_3XB_3=C_3\). He gives necessary and sufficient conditions for solvability, and he explicits the general solution to system (*), the bisymmetric one to system (**) and the perselfconjugate one to system \((***)\), the latter two in the case when there is an involution \(\sigma\) over \(R\) (char\(R\neq 2\)). An \(n\times n\)-matrix \(A=(a_{ij})\) is bisymmetric if \(a_{ij}=a_{n-i+1,n-j+1}=\sigma (a_{ji})\); it is perselfconjugate if \(A=A^{(*)}\) where \(A^{(*)}=VA^*V\), \(V\) being the permutation matrix with units along the antidiagonal and zeros elsewhere, and \(A^*=(\sigma (a_{ji}))\).

MSC:

15A24 Matrix equations and identities
15B33 Matrices over special rings (quaternions, finite fields, etc.)
15B57 Hermitian, skew-Hermitian, and related matrices
15A09 Theory of matrix inversion and generalized inverses
16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, Q. W.: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity. Linear Algebra Appl., 384, 43–54 (2004) · Zbl 1058.15015 · doi:10.1016/j.laa.2003.12.039
[2] Bhimasankaram, P.: Common solutions to the linear matrix equations AX = B,CX = D, and EXF = G. Sankhya Ser. A, 38, 404–409 (1976) · Zbl 0411.15008
[3] Aitken, A. C.: Determinants and Matrices, Oliver and Boyd, Edinburgh, 1939 · Zbl 0022.10005
[4] Datta, L., Morgera, S. D.: On the reducibility of centrosymmetric matrices–applications in engineering problems. Circuits Systems Sig. Proc., 8(1), 71–96 (1989) · Zbl 0674.15005 · doi:10.1007/BF01598746
[5] Cantoni, A., Butler, P.: Eigenvalues and eigenvectors of symmetric centrosymmetric matrices. Linear Algebra Appl., 13, 275–288 (1976) · Zbl 0326.15007 · doi:10.1016/0024-3795(76)90101-4
[6] Weaver, J. R.: Centrosymmetric (cross–symmetric) matrices, their basic properties, eigenvalues, eigenvectors. Amer. Math. Monthly, 92, 711–717 (1985) · Zbl 0619.15021 · doi:10.2307/2323222
[7] Lee, A.: Centrohermitian and skew–centrohermitian matrices. Linear Algebra Appl., 29, 205–210 (1980) · Zbl 0435.15019 · doi:10.1016/0024-3795(80)90241-4
[8] Hell, R. D., Bates, R. G., Waters, S. R.: On centrohermitian matrices. SIAM J. Matrix Anal. Appl., 11(1), 128–133 (1990) · Zbl 0709.15021 · doi:10.1137/0611009
[9] Hell, R. D., Bates, R. G., Waters, S. R.: On perhermitian matrices. SIAM J. Matrix Anal. Appl., 11(2), 173–179 (1990) · Zbl 0709.15022 · doi:10.1137/0611011
[10] Russell, M. Reid: Some eigenvalues properties of persymmetric matrices. SIAM Rev., 39, 313–316 (1997) · Zbl 0876.15006 · doi:10.1137/S0036144595294801
[11] Andrew, A. L.: Centrosymmetric matrices. SIAM Rev., 40, 697–698 (1998) · Zbl 0918.15006 · doi:10.1137/S0036144597328341
[12] Pressman, I. S.: Matrices with multiple symmetry properties: applications of centrohermitian and perhermitian matrices. Linear Algebra Appl., 284, 239–258 (1998) · Zbl 0957.15019 · doi:10.1016/S0024-3795(98)10144-1
[13] Melman, A.: Symmetric centrosymmetric matrix–vector multiplication. Linear Algebra Appl., 320, 193–198 (2000) · Zbl 0971.65022 · doi:10.1016/S0024-3795(00)00232-9
[14] Tao, D., Yasuda, M.: A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew–centrosymmetric matrices. SIAM J. Matrix Anal. Appl., 23(3), 885–895 (2002) · Zbl 1002.15011 · doi:10.1137/S0895479801386730
[15] Khatri, C. G., Mitra, S. K.: Hermitian and nonnegative definite solutions of linear matrix equations. SIAM J. Appl. Math., 31, 578–585 (1976) · Zbl 0359.65033 · doi:10.1137/0131050
[16] Vetter, W. J.: Vector structures and solutions of linear matrix equations. Linear Algebra Appl., 9, 181–188 (1975) · Zbl 0307.15003 · doi:10.1016/0024-3795(75)90010-5
[17] Magnus, J. R., Neudecker, H.: The elimination matrix: Some lemmas and applications. SIAM J. Algebraic Discrete Methods, 1, 422–428 (1980) · Zbl 0497.15014 · doi:10.1137/0601049
[18] Chu, K. E.: Symmetric solutions of linear matrix equations by matrix decomposition. Linear Algebra Appl., 119, 35–50 (1989) · Zbl 0688.15003 · doi:10.1016/0024-3795(89)90067-0
[19] Henk Don, F. J.: On the symmetric solutions of a linear matrix equation. Linear Algebra Appl., 93, 1–7 (1987) · Zbl 0622.15001 · doi:10.1016/S0024-3795(87)90308-9
[20] Dai, H.: On the symmetric solution of linear matrix equations. Linear Algebra Appl., 131, 1–7 (1990) · Zbl 0712.15009 · doi:10.1016/0024-3795(90)90370-R
[21] Wang, Q. W., Sun, J. H., Li, S. Z.: Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra. Linear Algebra Appl., 353, 169–182 (2002) · Zbl 1004.15017 · doi:10.1016/S0024-3795(02)00303-8
[22] Wang, Q. W.,Wang, A. Y., Li, S. Z.: Bi(skew)symmetric and bipositive semidefinite solutions to a system of linear matrix equations over division rings. Math. Sci. Res. J., 6(7), 333–339 (2002) · Zbl 1014.15007
[23] Wang, Q. W., Tian, Y. G., Li, S. Z.: Roth’s theorems for centroselfconjugate solutions to systems of matrix equations over a finite dimensional central algebra. Southeast Asian Bulletin of Mathematics, 27, 929–938 (2004) · Zbl 1058.15016
[24] Wang, Q. W., Li, S. Z.: The persymmetric and perskewsymmetric solutions to sets of matrix equations over a finite central algebra. Acta Math Sinica, Chinese Series, 47(1), 27–34 (2004) · Zbl 1167.15305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.