×

An invariance principle for nonlinear hybrid and impulsive dynamical systems. (English) Zbl 1082.37018

Summary: In this paper we develop an invariance principle for dynamical systems possessing left-continuous flows. Specifically, we show that left-continuity of the system trajectories in time for each fixed state point and continuity of the system trajectory in the state for every time in some dense subset of the semi-infinite interval are sufficient for establishing an invariance principle for hybrid and impulsive dynamical systems. As a special case of this result we state and prove new invariant set stability theorems for a class of nonlinear impulsive dynamical systems; namely, state-dependent impulsive dynamical systems. These results provide less conservative stability conditions for impulsive systems as compared to classical results in the literature and allow us to address the stability of limit cycles and periodic orbits of impulsive systems.

MSC:

37B25 Stability of topological dynamical systems
34A37 Ordinary differential equations with impulses
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D.D. Bainov, Personal communication, 1998.; D.D. Bainov, Personal communication, 1998.
[2] Bainov, D. D.; Simeonov, P. S., Systems with Impulse Effect: Stability, Theory and Applications (1989), Ellis Horwood Limited: Ellis Horwood Limited England · Zbl 0676.34035
[3] Bainov, D. D.; Simeonov, P. S., Impulsive Differential Equations: Asymptotic Properties of the Solutions (1995), World Scientific: World Scientific Singapore · Zbl 0828.34002
[4] Barbashin, E. A.; Krasovskii, N. N., On the stability of motion in the large, Dokl. Akad. Nauk., 86, 453-456 (1952)
[5] Brach, R. M., Mechanical Impact Dynamics (1991), Wiley: Wiley New York, NY · Zbl 0899.73086
[6] Branicky, M. S.; Borkar, V. S.; Mitter, S. K., A unified framework for hybrid control: model and optimal control theory, IEEE Trans. Automat. Control, 43, 31-45 (1998) · Zbl 0951.93002
[7] Brogliato, B., Nonsmooth Impact Mechanics: Models, Dynamics, and Control (1996), Springer-Verlag: Springer-Verlag London, UK · Zbl 0861.73001
[8] Bupp, R. T.; Bernstein, D. S.; Chellaboina, V.; Haddad, W. M., Resetting virtual absorbers for control, J. Vibr. Control, 6, 61-83 (2000)
[9] V. Chellaboina, S.P. Bhat, W.M. Haddad, An invariance principle for nonlinear hybrid and impulsive dynamical systems, in: Proceedings of the American Control Conference, Chicago, IL, June 2000, pp. 3123-3127.; V. Chellaboina, S.P. Bhat, W.M. Haddad, An invariance principle for nonlinear hybrid and impulsive dynamical systems, in: Proceedings of the American Control Conference, Chicago, IL, June 2000, pp. 3123-3127.
[10] Chellaboina, V.; Leonessa, A.; Haddad, W. M., Generalized Lyapunov and invariant set theorems for nonlinear dynamical systems, Systems Control Lett., 38, 289-295 (1999) · Zbl 0985.93053
[11] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1955), McGraw-Hill: McGraw-Hill New York, NY · Zbl 0042.32602
[12] A.F. Filippov, Differential Equations with Discontinuous Right-Hand Sides. Mathematics and its Applications (Soviet series), Kluwer Academic Publishers, Dordrecht, 1988.; A.F. Filippov, Differential Equations with Discontinuous Right-Hand Sides. Mathematics and its Applications (Soviet series), Kluwer Academic Publishers, Dordrecht, 1988.
[13] Grizzle, J. N.; Abba, G.; Pleston, F., Asymptotically stable walking for biped robotsanalysis via systems with impulse effects, IEEE Trans. Automat. Control, 46, 51-64 (2001) · Zbl 0992.93058
[14] W.M. Haddad, V. Chellaboina, N.A. Kablar, Nonlinear impulsive dynamical systems. Part I: Stability and dissipativity, in: Proceedings of the IEEE Conference on Decision and Control, Phoenix, AZ, 1999, pp. 4404-4422.; W.M. Haddad, V. Chellaboina, N.A. Kablar, Nonlinear impulsive dynamical systems. Part I: Stability and dissipativity, in: Proceedings of the IEEE Conference on Decision and Control, Phoenix, AZ, 1999, pp. 4404-4422.
[15] W.M. Haddad, V. Chellaboina, N.A. Kablar, Nonlinear impulsive dynamical systems. Part II: Feedback interconnections and optimality, in: Proceedings of the IEEE Conference on Decision and Control, Phoenix, AZ, 1999, pp. 5225-5234.; W.M. Haddad, V. Chellaboina, N.A. Kablar, Nonlinear impulsive dynamical systems. Part II: Feedback interconnections and optimality, in: Proceedings of the IEEE Conference on Decision and Control, Phoenix, AZ, 1999, pp. 5225-5234.
[16] Hagiwata, T.; Araki, M., Design of a stable feedback controller based on the multirate sampling of the plant output, IEEE Trans. Automat. Control, 33, 812-819 (1988) · Zbl 0648.93043
[17] Hu, S.; Lakshmikantham, V.; Leela, S., Impulsive differential systems and the pulse phenomena, J. Math. Anal. Appl., 137, 605-612 (1989) · Zbl 0684.34003
[18] Khalil, H. K., Nonlinear Systems (1996), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ · Zbl 0626.34052
[19] Krasovskii, N. N., Problems of the Theory of Stability of Motion (1959), Stanford University Press: Stanford University Press Stanford, CA, (English translation in 1963) · Zbl 0311.93039
[20] Kulev, G. K.; Bainov, D. D., Stability of sets for systems with impulses, Bull. Inst. Math. Acad. Sinica, 17, 313-326 (1989) · Zbl 0684.34053
[21] V. Lakshmikantham, Personal communications, 1998, 2000.; V. Lakshmikantham, Personal communications, 1998, 2000.
[22] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations (1989), World Scientific: World Scientific Singapore · Zbl 0719.34002
[23] Lakshmikantham, V.; Leela, S.; Kaul, S., Comparison principle for impulsive differential equations with variable times and stability theory, Non. Anal. Theory Methods Appl., 22, 499-503 (1994) · Zbl 0797.34058
[24] Lakshmikantham, V.; Liu, X., On quasi stability for impulsive differential systems, Non. Anal. Theory Methods Appl., 13, 819-828 (1989) · Zbl 0688.34032
[25] LaSalle, J. P., Some extensions of Liapunov’s second method, IRE Trans. Circuit Theory, CT-7, 520-527 (1960)
[26] LaSalle, J. P.; Lefschetz, S., Stability by Lyapunov’s Direct Method (1961), Academic Press: Academic Press New York, NY
[27] Liu, X., Quasi stability via Lyapunov functions for impulsive differential systems, Applicable Anal., 31, 201-213 (1988) · Zbl 0641.58023
[28] Liu, X., Stability results for impulsive differential systems with applications to population growth models, Dynamics Stability Systems, 9, 163-174 (1994) · Zbl 0808.34056
[29] A.N. Michel, Personal communication, 1999.; A.N. Michel, Personal communication, 1999.
[30] Passino, K. M.; Michel, A. N.; Antsaklis, P. J., Lyapunov stability of a class of discrete event systems, IEEE Trans. Automat. Control, 39, 269-279 (1994) · Zbl 0825.93590
[31] Royden, H. L., Real Analysis (1988), Macmillan: Macmillan New York, NY · Zbl 0704.26006
[32] Samoilenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations (1995), World Scientific: World Scientific Singapore · Zbl 0837.34003
[33] Simeonov, P. S.; Bainov, D. D., The second method of Lyapunov for systems with an impulse effect, Tamkang J. Math., 16, 19-40 (1985) · Zbl 0641.34051
[34] Simeonov, P. S.; Bainov, D. D., Stability with respect to part of the variables in systems with impulse effect, J. Math. Anal. Appl., 124, 547-560 (1987) · Zbl 0639.34057
[35] Vidyasagar, M., Nonlinear Systems Analysis (1993), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0900.93132
[36] Ye, H.; Michel, A. N.; Hou, L., Stability theory for hybrid dynamical systems, IEEE Trans. Automat. Control, 43, 461-474 (1998) · Zbl 0905.93024
[37] Ye, H.; Michel, A. N.; Hou, L., Stability analysis of systems with impulsive effects, IEEE Trans. Automat. Control, 43, 1719-1723 (1998) · Zbl 0957.34051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.