×

Homoclinic solutions for a class of the second order Hamiltonian systems. (English) Zbl 1080.37067

Summary: We study the existence of homoclinic orbits for the second-order Hamiltonian system \(\ddot q+ V_q(t,q)= f(t)\), where \(q\in \mathbb R^n\) and \(V\in C^1(\mathbb R\times\mathbb R^n,\mathbb R)\), and \(V(t,q)=-K(t,q)+W(t,q)\) is \(T\)-periodic in \(t\). A map \(K\) satisfies the “pinching” condition \(b_1|q|^2\leq K(t,q)\leq b_2|q|^2\), \(W\) is superlinear at infinity and \(f\) is sufficiently small in \(L^2(\mathbb R,\mathbb R^n)\). A homoclinic orbit is obtained as a limit of \(2kT\)-periodic solutions of a certain sequence of the second-order differential equations.

MSC:

37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
70H05 Hamilton’s equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosetti, A.; Coti Zelati, V., Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova, 89, 177-194 (1993) · Zbl 0806.58018
[2] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[3] Carrião, P. C.; Miyagaki, O. H., Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems, J. Math. Anal. Appl., 230, 157-172 (1999) · Zbl 0919.34046
[4] V. Coti Zelati, I. Ekeland, E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 228 (1990) 133-160.; V. Coti Zelati, I. Ekeland, E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. 228 (1990) 133-160. · Zbl 0731.34050
[5] Coti Zelati, V.; Rabinowitz, P. H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4, 693-727 (1991) · Zbl 0744.34045
[6] Ding, Y., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 25, 1095-1113 (1995) · Zbl 0840.34044
[7] Ding, Y.; Girardi, M., Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, J. Math. Anal. Appl., 189, 585-601 (1995)
[8] Ding, Y.; Li, S., Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal. Appl., 189, 585-601 (1995) · Zbl 0818.34023
[9] Ding, Y.; Willem, M., Homoclinic orbits of a Hamiltonian system, Z. Angew. Math. Phys., 50, 759-778 (1999) · Zbl 0997.37041
[10] Hofer, H.; Wysocki, K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann., 228, 483-503 (1990) · Zbl 0702.34039
[11] Omana, W.; Willem, M., Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations, 5, 1115-1120 (1992) · Zbl 0759.58018
[12] Rabinowitz, P. H., Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, 114A, 33-38 (1990) · Zbl 0705.34054
[13] Rabinowitz, P. H.; Tanaka, K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 472-499 (1991) · Zbl 0707.58022
[14] Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z., 209, 561-590 (1993)
[15] Szulkin, A.; Zou, W., Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal., 187, 25-41 (2001) · Zbl 0984.37072
[16] Tanaka, K., Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré, 7, 5, 427-438 (1990) · Zbl 0712.58026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.