×

Sequence spaces and asymmetric norms in the theory of computational complexity. (English) Zbl 1063.68057

Summary: In 1995, M. Schellekens [Proc. MFPS 11, Electronic Notes in Theoretical Computer Science 1, 211–232 (1995; Zbl 0910.68135)] introduced the complexity (quasi-metric) space as a part of the development of a topological foundation for the complexity analysis of algorithms. Recently, S. Romaguera and M. Schellekens [Topology Appl. 98, 311–322 (1999; Zbl 0941.54028)] have obtained several quasi-metric properties of the complexity space which are interesting from a computational point of view, via the analysis of the so-called dual complexity space.
Here, we extend the notion of the dual complexity space to the \(p\)-dual case, with \(p > 1\), in order to include some other kinds of exponential time algorithms in this study. We show that the dual \(p\)-complexity space is isometrically isomorphic to the positive cone of \(l_p\) endowed with the asymmetric norm \(\|\cdot\|_{+p}\) given on \(l_p\) by \(\| \mathbf x\|_{+p} = [{\Sigma}_{n=0}^{\infty}((x_n \vee 0)^p)]^{1/p}\), where \(\mathbf x := (x_n)_{n\in {\omega}}\). We also obtain some results on completeness and compactness of these spaces.

MSC:

68Q25 Analysis of algorithms and problem complexity
46A45 Sequence spaces (including Köthe sequence spaces)
54E15 Uniform structures and generalizations
54C35 Function spaces in general topology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fletcher, P.; Lindgren, W. F., Quasi-Uniform Spaces (1982), Marcel Dekker: Marcel Dekker New York · Zbl 0402.54024
[2] Künzi, H. P.A., Nonsymmetric topology, (Proc. Colloquium on Topology. Proc. Colloquium on Topology, 1993, Szekszárd, Hungary. Proc. Colloquium on Topology. Proc. Colloquium on Topology, 1993, Szekszárd, Hungary, Colloq. Math. Soc. János Bolyai Math. Studies, Volume 4 (1995)), 303-338 · Zbl 0888.54029
[3] Schellekens, M., The Smyth completion: A common foundation for denonational semantics and complexity analysis, (Proc. MFPS 11. Proc. MFPS 11, Electronic Notes in Theoretical Computer Science, Volume 1 (1995)), 211-232
[4] Romaguera, S.; Schellekens, M., Quasi-metric properties of complexity spaces, Topology Appl., 98, 311-322 (1999) · Zbl 0941.54028
[5] Romaguera, S.; Schellekens, M., Duality and quasi-normability for complexity spaces, Appl. Gen. Topology, 3, 91-112 (2002) · Zbl 1022.54018
[6] Aho, A. V.; Hopcroft, J. E.; Ullman, J. D., Data Structures and Algorithms (1983), Addison-Wesley: Addison-Wesley Boston, MA · Zbl 0307.68053
[7] Romaguera, S.; Schellekens, M., Cauchy filters and strong completeness of quasi-uniform spaces, Rostock. Math. Kolloq., 54, 69-79 (2000) · Zbl 0961.54022
[8] Ferrer, J.; Gregori, V.; Alegre, C., Quasi-uniform structures in linear lattices, Rocky Mountain J. Math., 23, 877-884 (1993) · Zbl 0803.46007
[9] Romaguera, S.; Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103, 292-301 (2000) · Zbl 0980.41029
[10] Keimel, K.; Roth, W., Ordered Cones and Approximation (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0752.41033
[11] Romaguera, S.; Schellekens, M., On the structure of the dual complexity space: The general case, Extracta Math., 13, 249-253 (1998) · Zbl 1006.54039
[12] Matthews, S. G., Partial metric topology, (Proc. \(8^{th}\) Summer Conference on General Topology and Appl.. Proc. \(8^{th}\) Summer Conference on General Topology and Appl., Ann. New York Acad. Sci., Volume 728 (1994)), 183-197 · Zbl 0911.54025
[13] Smyth, M. B., Quasi-uniformities: Reconciling domains with metric spaces, (Main, M., Proc. MFPS 3. Proc. MFPS 3, Lecture Notes in Computer Science, Volume 298 (1988), Springer: Springer Berlin), 236-253 · Zbl 0668.54018
[14] Smyth, M. B., (Reed, G. M.; Roscoe, A. W.; Wachter, R. F., Totally bounded spaces and compact ordered spaces as domains of computation. Totally bounded spaces and compact ordered spaces as domains of computation, Topology and Category Theory in Computer Science (1991), Clarendon: Clarendon Oxford), 207-229
[15] Künzi, H. P.A.; Schellekens, M., The Yoneda-completion of a quasi-metric space, Theoretical Comp. Sci., 278, 159-194 (2002) · Zbl 1025.54014
[16] Schellekens, M., (Complexity spaces revisited. Extended abstract. Complexity spaces revisited. Extended abstract, Proc. \(8^{th}\) Prague Topological Symposium, Topology Atlas (1996)), 337-348 · Zbl 0961.54020
[17] Reilly, I. L.; Subhramanyam, P. V.; Vamanamurthy, M. K., Cauchy sequences in quasi-pseudo-metric spaces, Monatsh. Math., 93, 127-140 (1982) · Zbl 0472.54018
[18] Grothendieck, A., Critères de compacité dans les espaces fonctionnels généraux, Amer. Math. J., 74, 168-186 (1952) · Zbl 0046.11702
[19] Asanov, M. O.; Velichko, N. V., Compact sets in \(C_p}(X)\), Comm. Math. Univ. Carolinae, 22, 255-266 (1981) · Zbl 0491.54011
[20] Romaguera, S.; Schellekens, M., The quasi-metric of complexity convergence, Quaestiones Math., 23, 359-374 (2000) · Zbl 0965.54028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.