×

Internal Lifshits tails for random perturbations of periodic Schrödinger operators. (English) Zbl 1060.82509

Duke Math. J. 98, No. 2, 335-396 (1999); correction ibid. 109, No. 2, 411-412 (2001).
The author studies the Lifshits tails for random perturbations of periodic Schrödinger operators. He proves that, at the edge of a gap, a true Lifshits tail for the random operator occurs if and only if the integrated density of states of the background periodic operator has a nondegenerate behavior. More precisely, he first considers periodic operators on \(L^2(\mathbb{R}^d)\) of the form \(H=-\Delta + W\), where \(W\) is a bounded, \(\mathbb{Z}^d\)-periodic, real-valued potential on \(\mathbb{R}^d\), and he assumes that the spectrum of \(H\) has a gap below energy zero. Then he considers random operators of the form \(H_{\omega}=H+V_{\omega}\), where \(V_{\omega}= \sum_{\gamma \in \mathbb{Z}^d}\omega_{\gamma}V(\cdot-{\gamma})\), where \(V\) is a nonnegative, bounded, compactly supported real-valued potential, and \(\omega=(\omega_{\gamma})_{\gamma \in \mathbb{Z}^d}\) is a collection of i.i.d. random variables on \([0,1]\), and he assumes that the \(\omega\)-almost sure spectrum of \(H_{\omega}\) has a gap below energy zero. Under these assumptions, he proves that \(H_{\omega}\) exhibits a Lifshits tail, that is, that the difference of integrated densities of states \(N(E)-N(0)\) of \(H_{\omega}\) has the same exponential decay of the form \(e^{-E^{-d/2}}\), when \(E\) tends to zero from above, that is, inside the spectrum, as the difference of integrated densities of states \(n(E)-n(0)\) of \(H\).

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
47N55 Applications of operator theory in statistical physics (MSC2000)
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47B80 Random linear operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Shmuel Agmon, On positive solutions of elliptic equations with periodic coefficients in \(\mathbf R^ n\), spectral results and extensions to elliptic operators on Riemannian manifolds , Differential equations (Birmingham, Ala., 1983) eds. I. Knowles and R. Lewis, North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 7-17. · Zbl 0564.35033
[2] J. M. Barbaroux, J. M. Combes, and P. D. Hislop, Localization near band edges for random Schrödinger operators , Helv. Phys. Acta 70 (1997), no. 1-2, 16-43. · Zbl 0866.35077
[3] M. Sh. Birman, Discrete spectrum in a gap of perturbed periodic operator at large coupling constants , Rigorous results in quantum dynamics (Liblice, 1990) eds. J. Dittrich and P. Exner, World Sci. Publishing, River Edge, NJ, 1991, pp. 16-24.
[4] René Carmona, Random Schrödinger operators , École d’été de probabilités de Saint-Flour, XIV-1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 1-124. · Zbl 0607.35089
[5] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry , Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. · Zbl 0619.47005
[6] Franck Daumer, Équation de Schrödinger avec champ électrique périodique et champ magnétique constant dans l’approximation du tight binding , Comm. Partial Differential Equations 18 (1993), no. 5-6, 1021-1041. · Zbl 0784.35093 · doi:10.1080/03605309308820959
[7] Y. C. de Verdière, “Sur les singularités de Van Hove génériques” , Analyse globale et physique mathématique: Colloquium en l’honneur d’E. Combet, Lyon, 1989, vol. 46, Mém. Soc. Math. France (N.S.), 1991, pp. 99-110.
[8] M. Eastham, The Spectral Theory of Periodic Differential Equations , Scottish Academic Press, Edinburgh, 1973. · Zbl 0287.34016
[9] B. Helffer and J. Sjöstrand, On diamagnetism and de Haas-van Alphen effect , Ann. Inst. H. Poincaré Phys. Théor. 52 (1990), no. 4, 303-375. · Zbl 0715.35070
[10] David Jerison and Carlos E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators , Ann. of Math. (2) 121 (1985), no. 3, 463-494. JSTOR: · Zbl 0593.35119 · doi:10.2307/1971205
[11] T. Kato, Perturbation Theory for Linear Operators , 2d ed., Grundlehren Math. Wiss., vol. 132, Springer-Verlag, Berlin, 1980. · Zbl 0435.47001
[12] Werner Kirsch, Random Schrödinger operators. A course , Schrödinger operators (Sønderborg, 1988) eds. A. Jensen and H. Holden, Lecture Notes in Phys., vol. 345, Springer, Berlin, 1989, pp. 264-370. · Zbl 0712.35070
[13] Werner Kirsch and Fabio Martinelli, On the spectrum of Schrödinger operators with a random potential , Comm. Math. Phys. 85 (1982), no. 3, 329-350. · Zbl 0506.60058 · doi:10.1007/BF01208718
[14] Werner Kirsch and Fabio Martinelli, Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians , Comm. Math. Phys. 89 (1983), no. 1, 27-40. · Zbl 0517.60071 · doi:10.1007/BF01219524
[15] W. Kirsch and B. Simon, Lifshits tails for the Anderson model , J. Statist. Phys. 38 (1985), 65-76.
[16] Werner Kirsch, Peter Stollmann, and Günter Stolz, Localization for random perturbations of periodic Schrödinger operators , Random Oper. Stochastic Equations 6 (1998), no. 3, 241-268. · Zbl 0927.60067 · doi:10.1515/rose.1998.6.3.241
[17] Frédéric Klopp, Étude semi-classique d’une perturbation d’un opérateur de Schrödinger périodique , Ann. Inst. H. Poincaré Phys. Théor. 55 (1991), no. 1, 459-509. · Zbl 0754.35100
[18] Frédéric Klopp, An asymptotic expansion for the density of states of a random Schrödinger operator with Bernoulli disorder , Random Oper. Stochastic Equations 3 (1995), no. 4, 315-331. · Zbl 0841.60047 · doi:10.1515/rose.1995.3.4.315
[19] Frédéric Klopp, Localization for some continuous random Schrödinger operators , Comm. Math. Phys. 167 (1995), no. 3, 553-569. · Zbl 0820.60044 · doi:10.1007/BF02101535
[20] F. Klopp and J. Ralston, Generic behaviour of open band edges for periodic Schrödinger operators and applications to Lifshits tail asymptotics , work in progress, 1997.
[21] Peter Kuchment, Floquet theory for partial differential equations , Operator Theory: Advances and Applications, vol. 60, Birkhäuser Verlag, Basel, 1993. · Zbl 0789.35002
[22] I. M. Lifshits, Structure of the energy spectrum of impurity bands in disordered solid solutions , Soviet Phys. JETP 17 (1963), 1159-1170.
[23] Ilya M. Lifshits, Serge\? A. Gredeskul, and Leonid A. Pastur, Introduction to the theory of disordered systems , A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1988.
[24] J. N. Mather, On Nirenberg’s proof of Malgrange’s preparation theorem , Proceedings of Liverpool Singularities-Symposium, I (1969/70), Springer, Berlin, 1971, 116-120. Lecture Notes in Mathematics, Vol. 192. · Zbl 0211.56102
[25] G. Mezincescu, Internal Lifshitz singularities of disordered finite-difference Schrödinger operators , Comm. Math. Phys. 103 (1986), 107-116. · Zbl 0617.35032 · doi:10.1007/BF01464286
[26] G. A. Mezincescu, Lifschitz singularities for periodic operators plus random potentials , J. Statist. Phys. 49 (1987), no. 5-6, 1181-1190. · Zbl 0971.82508 · doi:10.1007/BF01017565
[27] G. A. Mezincescu, Internal Lifschitz singularities for one-dimensional Schrödinger operators , Comm. Math. Phys. 158 (1993), no. 2, 315-325. · Zbl 0783.60062 · doi:10.1007/BF02108077
[28] Shintaro Nakao, On the spectral distribution of the Schrödinger operator with random potential , Japan. J. Math. (N.S.) 3 (1977), no. 1, 111-139. · Zbl 0375.60067
[29] A. Outassourt, Comportement semi-classique pour l’opérateur de Schrödinger à potentiel périodique , J. Funct. Anal. 72 (1987), no. 1, 65-93. · Zbl 0662.35023 · doi:10.1016/0022-1236(87)90082-6
[30] L. A. Pastur, The behavior of certain Wiener integrals as \(t\rightarrow \infty\) and the density of states of Schrödinger equations with random potential , Teoret. Mat. Fiz. 32 (1977), no. 1, 88-95, in Russian. · Zbl 0353.60053
[31] Leonid Pastur and Alexander Figotin, Spectra of random and almost-periodic operators , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 297, Springer-Verlag, Berlin, 1992. · Zbl 0752.47002
[32] Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis , Academic Press, New York, 1972. · Zbl 0242.46001
[33] Michael Reed and Barry Simon, Methods of modern mathematical physics. IV. Analysis of operators , Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. · Zbl 0401.47001
[34] M. A. Šubin, Spectral theory and the index of elliptic operators with almost-periodic coefficients , Uspekhi Mat. Nauk 34 (1979), no. 2(206), 95-135, (in Russian); English transl. in Russian Math. Surveys 34, no. 2 (1979), 109-157.
[35] Barry Simon, Schrödinger semigroups , Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 3, 447-526. · Zbl 0524.35002 · doi:10.1090/S0273-0979-1982-15041-8
[36] Barry Simon, Semiclassical analysis of low lying eigenvalues. III. Width of the ground state band in strongly coupled solids , Ann. Physics 158 (1984), no. 2, 415-420. · Zbl 0596.35028 · doi:10.1016/0003-4916(84)90125-8
[37] Barry Simon, Lifschitz tails for the Anderson model , J. Statist. Phys. 38 (1985), no. 1-2, 65-76. · doi:10.1007/BF01017848
[38] Barry Simon, Internal Lifschitz tails , J. Statist. Phys. 46 (1987), no. 5-6, 911-918. · Zbl 0683.60079 · doi:10.1007/BF01011147
[39] Johannes Sjöstrand, Microlocal analysis for the periodic magnetic Schrödinger equation and related questions , Microlocal analysis and applications (Montecatini Terme, 1989), Lecture Notes in Math., vol. 1495, Springer, Berlin, 1991, pp. 237-332. · Zbl 0761.35090
[40] M. M. Skriganov, Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators , Proc. Steklov Inst. Math. (1987), no. 2(171), vi+121. · Zbl 0615.47004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.