×

Supersymmetric large extra dimensions and the cosmological constant: an update. (English) Zbl 1054.83028

Summary: This article critically reviews the proposal for addressing the cosmological constant problem within the framework of supersymmetric large extra dimensions (SLED), as recently proposed in hep-th/0304256. After a brief restatement of the cosmological constant problem, a short summary of the proposed mechanism is given. The emphasis is on the perspective of the low-energy effective theory in order to see how it addresses the problem of why low-energy particles like the electron do not contribute too large a vacuum energy. This is followed by a discussion of the main objections, which are grouped into the following five topics: (1) Weinbergś No-Go Theorem. (2) Are hidden tunings of the theory required, and are these stable under renormalization? (3) Why should the mechanism apply only now and not rule out possible earlier epochs of inflationary dynamics? (4) How big are quantum effects, and which are the most dangerous? and (5) Even if successful, can the mechanism be consistent with cosmological or current observational constraints? It is argued that there are plausible reasons why the mechanism can ward off potential objections, but that a definitive proof that can do so depends on addressing well-defined technical points. These points include identifying what fixes the size of the extra dimensions, checking how topological obstructions renormalize and performing specific calculations of quantum corrections. More detailed studies of these issues, which are well within reach of our present understanding of extra-dimensional theories, are currently underway. As such, the jury remains out concerning the proposal, although the prospects for acquittal still seem good. (An abridged version of this article appears in the proceedings of SUSY 2003.)

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
81Q60 Supersymmetry and quantum mechanics
83F05 Relativistic cosmology
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bahcall, N.; Ostriker, J. P.; Perlmutter, S.; Steinhardt, P. J., Science, 284, 1481 (1999)
[2] Weinberg, S., Rev. Mod. Phys, 61, 1 (1989)
[3] Aghababaie, Y.; Burgess, C. P.; Parameswaran, S.; Quevedo, F., Nucl. Phys. B, 680, 389 (2004)
[4] Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. R., Phys. Lett. B, 436, 257 (1998)
[5] E.G. Adelberger, B.R. Heckel, A.E. Nelson, Tests of the Gravitational Inverse Square Law. Available from <hep-ph/0307284; E.G. Adelberger, B.R. Heckel, A.E. Nelson, Tests of the Gravitational Inverse Square Law. Available from <hep-ph/0307284
[6] Atwood, D.; Burgess, C. P.; Filotas, E.; Leblond, F.; London, D.; Maksymyk, I., Phys. Rev. D, 63, 025007 (2001)
[7] G. Azuelos, P.-H. Beauchemin, C.P. Burgess, Phenomenological constraints on extra-dimensional scalars, ATLAS publication SN-ATLAS-2004-037. Available from <hep-ph/0401125; G. Azuelos, P.-H. Beauchemin, C.P. Burgess, Phenomenological constraints on extra-dimensional scalars, ATLAS publication SN-ATLAS-2004-037. Available from <hep-ph/0401125
[8] Hewett, J.; March-Russell, J., Phys. Rev. D, 6, 010001 (2002)
[9] Phys. Lett. B, 470, 281 (1999)
[10] Virtual graviton exchange in LED scenarios has also been widely studied, although the interpretation of these calculations is less clear due to the potential confusion of the results with the exchange of higher-mass particles [11]hep-ph/0003306; Virtual graviton exchange in LED scenarios has also been widely studied, although the interpretation of these calculations is less clear due to the potential confusion of the results with the exchange of higher-mass particles [11]hep-ph/0003306
[11] S. Cullen, M. Perelstein, M.E. Peskin. Available from <hep-ph/0001166; S. Cullen, M. Perelstein, M.E. Peskin. Available from <hep-ph/0001166
[12] Erratum, Phys. Rev. D 69 (2004) 029901. Available from <hep-ph/0304029; Erratum, Phys. Rev. D 69 (2004) 029901. Available from <hep-ph/0304029
[13] Hannestad, S., Phys. Rev. D, 64, 023515 (2001)
[14] Mohapatra, R. N.; Nussinov, S.; Perez-Lorenzana, A., Phys. Rev. D, 68, 116001 (2003)
[15] Weinberg, S., Gravitation and Cosmology (1972), Wiley: Wiley New York
[16] J.-W. Chen, M.A. Luty, E. Pontón. Available from <hep-th/0003067; J.-W. Chen, M.A. Luty, E. Pontón. Available from <hep-th/0003067
[17] C. Angelantonj, I. Antoniadis. Available from <hep-th/0307254; C. Angelantonj, I. Antoniadis. Available from <hep-th/0307254
[18] Kachru, S.; Schulz, M. B.; Silverstein, E., Phys. Rev. D, 62, 045021 (2000)
[19] Aghababie, Y.; Burgess, C. P.; Cline, J. M.; Firouzjahi, H.; Quevedo, F.; Tasinato, G.; Zavala, I., JHEP, 0309, 037 (2003)
[20] Aghababaie, Y.; Burgess, C. P.; Parameswaran, S.; Quevedo, F., JHEP, 0303, 032 (2003)
[21] G.W. Gibbons, C.N. Pope, Consistent S**2 Pauli Reduction of Six-dimensional Chiral Gauged Einstein-Maxwell Supergravity. Available from <arXiv:hep-th/0307052; G.W. Gibbons, C.N. Pope, Consistent S**2 Pauli Reduction of Six-dimensional Chiral Gauged Einstein-Maxwell Supergravity. Available from <arXiv:hep-th/0307052
[22] Cline, J. M.; Firouzjahi, H., Phys. Rev. D, 65, 043501 (2002)
[23] Navarro, I., Class. Quant. Grav, 20, 3603-3612 (2003)
[24] Navarro, I., JCAP, 0309, 004 (2003)
[25] Salam, A.; Sezgin, E., Phys. Lett. B, 147, 47 (1984)
[26] Randjbar-Daemi, S.; Salam, A.; Sezgin, E.; Strathdee, J., Phys. Lett. B, 151, 351 (1985)
[27] Nucl. Phys. B, 278, 353 (1986)
[28] G.W. Gibbons, R. Güven, C.N. Pope. Available from <hep-th/0307238; G.W. Gibbons, R. Güven, C.N. Pope. Available from <hep-th/0307238
[29] B. Dewitt, The space-time approach to quantum field theory, in: Les Houches, Proceedings, Relativity, Groups and Topology, 1983, pp. 381-738; B. Dewitt, The space-time approach to quantum field theory, in: Les Houches, Proceedings, Relativity, Groups and Topology, 1983, pp. 381-738
[30] Phys. Rev. Lett, 83, 4690 (1999)
[31] Arkani-Hamed, Nima; Hall, Lawrence J.; Smith, David R.; Weiner, Neal, Phys. Rev. D, 62, 105002 (2000)
[32] Albrecht, A.; Burgess, C. P.; Ravndal, F.; Skordis, C., Phys. Rev. D, 65, 123505 (2002)
[33] D. Hoover et al. (in preparation); D. Hoover et al. (in preparation)
[34] S. Parameswaran, F. Quevedo, private communication; S. Parameswaran, F. Quevedo, private communication
[35] Carroll, S. M.; Kaplinghat, M., Phys. Rev. D, 65, 063507 (2002)
[36] Cline, J. M.; Grojean, C.; Servant, G., Phys. Rev. Lett, 83, 4245 (1999)
[37] Steinhardt, P. J.; Wang, L. M.; Zlatev, I., Phys. Rev. D, 59, 123504 (1999)
[38] Aguirre, A.; Burgess, C. P.; Friedland, A.; Nolte, D., Class. Quant. Grav, 18, R223-R232 (2001)
[39] Albrecht, A.; Burgess, C. P.; Ravndal, F.; Skordis, C., Phys. Rev. D, 65, 123506 (2002)
[40] Nilles, H.-P.; Papazoglou, A.; Tasinato, G., Nucl. Phys. B, 677, 405-429 (2004)
[41] Cvetic, M.; Gibbons, G. W.; Pope, C. N., Nucl. Phys. B, 677, 164-180 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.