×

Linearized pipe flow to Reynolds number \(10^7\). (English) Zbl 1047.76565

Summary: A Fourier–Chebyshev Petrov–Galerkin spectral method is described for high-accuracy computation of linearized dynamics for flow in an infinite circular pipe. Our code is unusual in being based on solenoidal velocity variables and in being written in MATLAB. Systematic studies are presented of the dependence of eigenvalues, transient growth factors, and other quantities on the axial and azimuthal wave numbers and the Reynolds number \(R\) for \(R\) ranging from 10\(^{2}\) to the idealized (physically unrealizable) value 10\(^{7}\). Implications for transition to turbulence are considered in the light of recent theoretical results of S.J. Chapman.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baggett, J. S.; Trefethen, L. N., Low-dimensional models of subcritical transition to turbulence, Phys. Fluids, 9, 1043 (1997) · Zbl 1185.76574
[2] Bergström, L., Optimal growth of small disturbances in pipe Poiseuille flow, Phys. Fluids A, 11, 2710 (1993) · Zbl 0808.76029
[3] Boberg, L.; Brosa, U., Onset of turbulence in a pipe, Z. Naturforsch., 43a, 696 (1988)
[4] Butler, K. M.; Farrell, B. F., Three-dimensional optimal perturbations in viscous shear flow, Phys. Fluids A, 4, 1637 (1992)
[5] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer: Springer New York · Zbl 0658.76001
[6] Chapman, S. J., Subcritical transition in channel flows, J. Fluid Mech., 451, 35 (2002) · Zbl 1037.76023
[7] Darybyshire, A. G.; Mullin, T., Transition to turbulence in constant mass-flux pipe flow, J. Fluid Mech., 289, 83 (1995)
[8] Draad, A. A.; Kuiken, G. D.C.; Nieuwstadt, F. T.M., Laminar-turbulent transition in pipe flow for Newtonian and non-Newtonian fluids, J. Fluid Mech., 377, 267 (1998) · Zbl 0941.76528
[9] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability (1981), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0449.76027
[10] M. Embree, L.N. Trefethen, Pseudospectra Gateway, web site at http://www.comlab.ox.ac.uk/pseudospectra; M. Embree, L.N. Trefethen, Pseudospectra Gateway, web site at http://www.comlab.ox.ac.uk/pseudospectra
[11] Gebhardt, T.; Grossmann, S., Chaos transition despite linear stability, Phys. Rev. E, 50, 3705 (1994)
[12] Gustavsson, L. H., Energy growth of three-dimensional disturbances in plane Poiseuille flow, J. Fluid Mech., 224, 241 (1991) · Zbl 0717.76044
[13] J. Komminaho, A.V. Johansson, Development of a spectrally accurate DNS code for cylindrical geometries, part V of J. Komminaho, Direct Numerical Simulation of Turbulent Flow in Plane and Cylindrical Geometries, Doctoral Thesis, Royal Institute of Technology, Stockholm, 2000; J. Komminaho, A.V. Johansson, Development of a spectrally accurate DNS code for cylindrical geometries, part V of J. Komminaho, Direct Numerical Simulation of Turbulent Flow in Plane and Cylindrical Geometries, Doctoral Thesis, Royal Institute of Technology, Stockholm, 2000
[14] Kreiss, G.; Lundbladh, A.; Henningson, D. S., Bounds for threshold amplitudes in subcritical shear flows, J. Fluid Mech., 270, 175 (1994) · Zbl 0813.76024
[15] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1959), Pergamon Press: Pergamon Press Oxford · Zbl 0146.22405
[16] Leonard, A.; Wray, A., A new numerical method for the simulation of three dimensional flow in a pipe, (Krause, E., Proceedings of the 8th International Conference on Numerical Methods in Fluid Dynamics (1982), Springer: Springer Berlin)
[17] Lundbladh, A.; Henningson, D. S.; Reddy, S. C., Threshold amplitudes for transition in channel flows, (Transition, Turbulence and Combustion, vol. I (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht)
[18] Á. Meseguer and L.N. Trefethen, A spectral Petrov-Galerkin formulation for pipe flow I: linear stability and transient growth, Rep. 00/18, Numerical Analysis Group, Oxford University, Computing Lab., 2000, available at http: //web.comlab.ox.ac.uk/oucl/publications/natr/; Á. Meseguer and L.N. Trefethen, A spectral Petrov-Galerkin formulation for pipe flow I: linear stability and transient growth, Rep. 00/18, Numerical Analysis Group, Oxford University, Computing Lab., 2000, available at http: //web.comlab.ox.ac.uk/oucl/publications/natr/
[19] Á. Meseguer, L.N. Trefethen, A spectral Petrov-Galerkin formulation for pipe flow II: nonlinear transitional stages, Rep. 01/19, Numerical Analysis Group, Oxford University, Computing Lab., 2001, available at http://web.comlab.ox.ac.uk/oucl/piiblications/natr/; Á. Meseguer, L.N. Trefethen, A spectral Petrov-Galerkin formulation for pipe flow II: nonlinear transitional stages, Rep. 01/19, Numerical Analysis Group, Oxford University, Computing Lab., 2001, available at http://web.comlab.ox.ac.uk/oucl/piiblications/natr/
[20] Moser, R. D.; Moin, P.; Leonard, A., A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow, J. Comp. Phys., 52, 524 (1983) · Zbl 0529.76034
[21] O’Sullivan, P. L.; Breuer, K. S., Transient growth in a circular pipe. I. Linear disturbances, Phys. Fluids, 6, 3643 (1994) · Zbl 0848.76022
[22] Priymak, V. G.; Miyazaki, T., Accurate Navier-Stokes investigation of transitional and turbulent flows in a circular pipe, J. Comp. Phys., 142, 370 (1998) · Zbl 0933.76064
[23] Reddy, S. C.; Henningson, D. S., Energy growth in viscous channel flows, J. Fluid Mech., 252, 209 (1993) · Zbl 0789.76026
[24] Reddy, S. C.; Schmid, P. J.; Baggett, J. S.; Henningson, D. S., On stability of streamwise streaks and transition thresholds in plane channel flows, J. Fluid Mech., 365, 269 (1998) · Zbl 0927.76029
[25] Reddy, S. C.; Schmid, P. J.; Henningson, D. S., Pseudospectra of the Orr-Sommerfeld operator, SIAM J. Appl. Math., 53, 15 (1993) · Zbl 0778.34060
[26] Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Philos. Trans. Roy. Soc., 174, 935 (1883) · JFM 16.0845.02
[27] Schmid, P. J.; Henningson, D. S., Optimal energy growth in Hagen-Poiseuille flow, J. Fluid Mech., 277, 197 (1994) · Zbl 0888.76024
[28] Schmid, P. J.; Henningson, D. S., Stability and Transition in Shear Flows (2001), Springer: Springer New York · Zbl 0966.76003
[29] Shan, H.; Ma, B.; Zhang, Z.; Nieuwstadt, F. T.M., Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow, J. Fluid Mech., 387, 39 (1999) · Zbl 0979.76039
[30] Trefethen, L. N., Pseudospectra of linear operators, SIAM Rev., 39, 247 (1999) · Zbl 0945.65039
[31] Trefethen, L. N.; Trefethen, A. E.; Reddy, S. C.; Driscoll, T. A., Hydrodynamic stability without eigenvalues, Science, 261, 578 (1993) · Zbl 1226.76013
[32] Trefethen, A. E.; Trefethen, L. N.; Schmid, P. J., Spectra and pseudospectra for pipe Poiseuille flow, Comp. Meth. Appl. Mech. Eng., 1926, 413 (1999) · Zbl 0927.76078
[33] Tuckerman, L. S., Divergence-free velocity fields in nonperiodic geometries, J. Comp. Phys., 80, 403 (1989) · Zbl 0668.76027
[34] T.G. Wright, Eigtool (MATLAB software package), available at http://www.comlab.ox.ac.uk/pseudospectra/eigtool/; T.G. Wright, Eigtool (MATLAB software package), available at http://www.comlab.ox.ac.uk/pseudospectra/eigtool/
[35] Wygnanski, I. J.; Champagne, F. H., On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug, J. Fluid Mech., 59, 281 (1973)
[36] Y. Zhang, A. Gandhi, A.G. Tomboulides, S.A. Orszag, Simulation of pipe flow, in: Application of Direct and Large Eddy Simulation to Transition and Turbulence, AGARD Conference, Crete, 1994, pp. 17.1-17.9; Y. Zhang, A. Gandhi, A.G. Tomboulides, S.A. Orszag, Simulation of pipe flow, in: Application of Direct and Large Eddy Simulation to Transition and Turbulence, AGARD Conference, Crete, 1994, pp. 17.1-17.9
[37] Zikanov, O. Yu., On the instability of pipe Poiseuille flow, Phys. Fluids, 8, 2923 (1996) · Zbl 1027.76546
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.