×

From the Jager and Segel model to kinetic population dynamics nonlinear evolution problems and applications. (English) Zbl 1043.92518

Summary: This paper deals with the analysis of a new class of models of population dynamics with competition and kinetic interactions. The content is organized in three parts. The first one refers to modelling in the framework of the so-called generalized Boltzmann models. The second part deals with qualitative analysis of the initial and initial boundary value problems. The third part of the paper provides a survey of applications and develops an analysis of some open problems.

MSC:

92D25 Population dynamics (general)
34G20 Nonlinear differential equations in abstract spaces
35Q99 Partial differential equations of mathematical physics and other areas of application
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jager, E.; Segel, L., On the distribution of dominance in a population of interacting anonymous organisms, SIAM J. Appl. Math., 52, 1442-1468 (1992) · Zbl 0759.92011
[2] Hogeweg, P.; Hesper, P., The ontogeny of the interaction structure in bumble bee colonies, Behav. Ecol. Sociobiol., 12, 183-271 (1983)
[3] Arlotti, L.; Bellomo, N., On a new model of population dynamics with stochastic interaction, Transp. Theory Statist. Phys., 24, 431-443 (1995) · Zbl 0838.92018
[4] Bellomo, N.; Forni, G.; Preziosi, L., On the kinetic (cellular) theory for the competition between tumors and host-immune system, J. Biol. Systems, 4, 479-502 (1996)
[5] Bellomo, N.; Firmani, B.; Guerri, L.; Preziosi, L., On a kinetic theory of cytokine mediated interactions between tumors and immune host system, ARI Journal, 1, 21-32 (1997)
[6] Bellomo, N.; LoSchiavo, M., From the Boltzmann equation to generalized kinetic models in applied sciences, Mathl. Comput. Modelling, 26, 7, 43-76 (1997) · Zbl 0897.76082
[7] Zeider, E., Applied Functional Analysis (1995), Springer: Springer Berlin
[8] Belleni Morante, A., Applied Semigroup Theory (1978), Oxford University Press: Oxford University Press Oxford · Zbl 0394.45006
[9] Belleni Morante, A., A Concise Guide to Semigroup Applications (1994), World Science: World Science London · Zbl 0807.34074
[10] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1982), Springer: Springer New York · Zbl 0516.47023
[11] Adam, J.; Bellomo, N., A Survey of Models on Tumor Immune-System Dynamics (1996), Birkhäuser: Birkhäuser Boston, MA
[12] Bellomo, N.; De Angelis, E., Strategies of applied mathematics towards an immuno mathematical theory on tumors and immune system interactions, Math. Models Meth. Appl. Sci., 8, 1403-1429 (1998) · Zbl 0947.92014
[13] Segel, L. A.; Perelson, A. S., Computations in shape space: A new approach to immune network theory, (Perelson, A. S., Theoretical Immunology, Part Two, SFI Studies in the Science of Complexity (1988), Addison-Wesley: Addison-Wesley New York), 321-342
[14] De Boer, R. J.; Segel, L.; Perelson, S., Pattern formation in one or two dimensional shape-space models of the immune system, J. Theor. Biol., 155, 295-333 (1992)
[15] De Boer, R. J.; Boerlijst, M. C.; Sulzer, B.; Perelson, S., A new bell shaped function for idiotypic interactions based on cross linking, Bull. Math. Biol., 58, 285-312 (1996) · Zbl 0853.92006
[16] Webb, G. F., Dynamics of structured populations with inherited properties, Computers Math. Applic., 13, 9-11, 749-758 (1987) · Zbl 0641.92010
[17] Lebowitz, J.; Rubinow, S., A theory for the age and generation time distribution of microbial population, J. Math. Biology, 1, 17-36 (1974) · Zbl 0402.92023
[18] Latrach, K.; Mokhtar-Kharroubi, M., On an unbounded linear operator arising in the theory of growing cell population, J. Math. Anal. Appl., 211, 273-294 (1997) · Zbl 0896.92023
[19] K. Latrach, A nonlinear boundary value problem arising in growing cell populations, Nonl. Anal. TMA; K. Latrach, A nonlinear boundary value problem arising in growing cell populations, Nonl. Anal. TMA · Zbl 0935.35170
[20] Arlotti, L.; Bellomo, N., Solution of a new class of nonlinear kinetic models of population dynamics, Appl. Math. Lett., 9, 2, 65-70 (1996) · Zbl 0853.35050
[21] Bellomo, M.; Lachowicz, M.; Polewczack, J., The evolution of the generalized shape in immunology, Appl. Math. Lett., 10, 4, 53-58 (1997) · Zbl 0898.92017
[22] Alt, W., Biased random walk models for chemotaxis and related diffusion approximation, J. Math. Biol., 9, 147-177 (1980) · Zbl 0434.92001
[23] Levin, S., Random walk models of movement and their applications, (Hallman, T.; Levin, S., Mathematical Ecology, An Introduction. Mathematical Ecology, An Introduction, Springer Lecture Notes in Biomath, Volume 17 (1986)), 149-155
[24] Gourley, S.; Britton, N. A., A predator-prey reaction diffusion system with nonlocal effects, J. Math. Biol., 34, 297-333 (1996) · Zbl 0840.92018
[25] Hillen, T., A turing model with correlated random walk, J. Math. Biol., 35, 49-72 (1996) · Zbl 0863.92001
[26] Othmer, H.; Dunbar, S.; Alt, W., Models for dispersal in biological systems, J. Math. Biol., 26, 263-298 (1998) · Zbl 0713.92018
[27] L. Arlotti, M. Lachowicz and N. Bellomo, Kinetic equations modelling population dynamics, Transp. Theory Statist. Phys.; L. Arlotti, M. Lachowicz and N. Bellomo, Kinetic equations modelling population dynamics, Transp. Theory Statist. Phys. · Zbl 0946.92019
[28] Amann, H., Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math., 45, 225-254 (1983) · Zbl 0535.35017
[29] Sobolevskii, P. E., Estimate of the Green function of second order partial differential equations with parabolic type, Soviet Mathematics, 2, 617-619 (1962), (English translation)
[30] Pierre, M.; Schmitt, D., Blowup in reaction-diffusion system with dissipation of mass, Siam J. Math. Anal., 28, 259-269 (1997) · Zbl 0877.35061
[31] Bellomo, N.; Lachowica, M., Mathematical biology and kinetic theory: Evolution of the dominance in a population of interacting organisms, (Boff, V.; etal., Nonlinear Kinetic Theory and Hyperbolic Systems (1992), World Science: World Science London), 11-20
[32] Preziosi, L., From population dynamics to modelling the competition between tumors and immune system, Mathl. Comput. Modelling, 23, 6, 135-152 (1996) · Zbl 0897.92016
[33] Alt, W.; Deutsch, A.; Dunn, G., Dynamics of Cell and Tissue Motion (1997), Birkhäuser: Birkhäuser Basel
[34] B. Firmani, L. Guerri and L. Preziosi, Tumor/immune system competition with medically induced activation/disactivation, Math. Models Meth. Apl. Sci.; B. Firmani, L. Guerri and L. Preziosi, Tumor/immune system competition with medically induced activation/disactivation, Math. Models Meth. Apl. Sci. · Zbl 0934.92016
[35] Arino, O.; Smith, W., Migration in age structured population dynamics, Math. Models Meth. Appl. Sci., 8, 905-925 (1998) · Zbl 0936.92030
[36] MacDonald, N., Biological Delay Systems: Linear Stability Theory (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0669.92001
[37] Caraffini, G.; Iori, M.; Spiga, G., On the connection between kinetic theory and a statistical model for the distribution of dominance in populations of social organisms, Riv. Mat. Univ. Perma, 5, 169-181 (1996) · Zbl 0905.92029
[38] Arlotti, L.; Lachowicz, M., Qualitative analysis of a nonlinear integrodifferential equation modelling tumor-host dynamics, Mathl. Comput. Modelling, 23, 6, 11-30 (1996) · Zbl 0859.92011
[39] Bellomo, N.; Firman, B.; Guerri, L., Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor-immune cells competition, Appl. Math. Lett., 12, 2, 39-44 (1999) · Zbl 0932.92016
[40] Lo Schiavo, M., Discrete kinetic cellular models for tumor immune system interaction, Math. Models Meth. in Appl. Sci., 8, 1187-1210 (1996) · Zbl 0874.92022
[41] Arino, O.; Sanchez, E., An integral equation of cell population dynamics formulated as an abstract delay equation—Some consequences, Math. Models Meth. Appl. Sci., 8, 905-925 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.