×

Error bounds for solving pseudodifferential equations on spheres by collocation with zonal kernels. (English) Zbl 1004.65108

Author’s abstract: The problem of solving pseudodifferential equations on spheres by collocation with zonal kernels is considered and bounds for the approximation error are established. The bounds are given in terms of the maximum separation distance of the collocation points, the order of the pseudodifferential operator, and the smoothness of the employed zonal kernel. A by-product of the results is an improvement on the previously known convergence order estimates for Lagrange interpolation.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
41A05 Interpolation in approximation theory
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35S15 Boundary value problems for PDEs with pseudodifferential operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dyn, N.; Narcowich, F. J.; Ward, J. D., A framework for interpolation and approximation on Riemannian manifolds, Approximation Theory and Optimization (Cambridge, 1996) (1997), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, p. 133-144 · Zbl 1049.41014
[2] Dyn, N.; Narcowich, F. J.; Ward, J. D., Variational principles and Sobolev-type estimates for generalized interpolation on a Riemannian manifold, Constr. Approx., 15, 175-208 (1999) · Zbl 0948.41015
[3] Eskin, G. I., Boundary Value Problems for Elliptic Pseudodifferential Equations. Boundary Value Problems for Elliptic Pseudodifferential Equations, Translations of Math. Monographs, 52 (1981), Amer. Math. Soc: Amer. Math. Soc Providence · Zbl 0458.35002
[4] Fasshauer, G. E., Solving partial differential equations by collocation with radial basis functions, (Le Méhauté, A.; Rabut, C.; Schumaker, L. L., Surface Fitting and Multiresolution Methods (1997), Vanderbilt Univ. Press: Vanderbilt Univ. Press Nashville), 131-138 · Zbl 0938.65140
[5] Fasshauer, G. E., Hermitte interpolation with radial basis functions on spheres, Adv. Comput. Math., 10, 81-96 (1999) · Zbl 0918.41003
[6] Fasshauer, G. E.; Schumaker, L. L., Scattered data fitting on the sphere, (Dæhlen, M.; Lyche, T.; Schumaker, L. L., Mathematical Methods for Curves and Surfaces, II (1998), Vanderbilt Univ. Press: Vanderbilt Univ. Press Nashville), 117-166 · Zbl 0904.65015
[7] Franke, C.; Schaback, R., Solving partial differential equations by collocation using radial basis functions, Appl. Math. Comput., 93, 73-82 (1998) · Zbl 0943.65133
[8] Franke, C.; Schaback, R., Convergence order estimates of meshless collocation methods using radial basis functions, Adv. Comput. Math., 8, 381-399 (1998) · Zbl 0909.65088
[9] Freeden, W., Spherical spline interpolation—basic theory and computational aspects, J. Comput. Appl. Math., 11, 367-375 (1984) · Zbl 0557.41012
[10] Freeden, W.; Gervens, T.; Schreiner, M., Constructive Approximation on the Sphere with Applications to Geomathematics (1998), Oxford Univ. Press: Oxford Univ. Press Oxford · Zbl 0896.65092
[11] Gilkey, P. B., The Index Theorem and the Heat Equation (1974), Publish or Perish, Inc: Publish or Perish, Inc Boston
[12] von Golitschek, M.; Light, W. A., Interpolation by polynomials and radial basis functions on spheres, Constr. Approx., 17, 1-18 (2001) · Zbl 0983.41002
[13] Golomb, M.; Weinberger, H. F., Optimal approximation and error bounds, (Lange, R. E., On Numerical Approximation (1959), Univ. of Wisconsin Press: Univ. of Wisconsin Press Madison), 117-190
[14] Jetter, K.; Stöckler, J.; Ward, J. D., Error estimates for scattered data interpolation on spheres, Math. Comp., 68, 733-747 (1999) · Zbl 1042.41003
[15] J. Levesley, and, Z. Luo, Error estimates for Hermite interpolation on spheres, preprint.; J. Levesley, and, Z. Luo, Error estimates for Hermite interpolation on spheres, preprint. · Zbl 1023.41003
[16] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications (1972), Springer-Verlag: Springer-Verlag New York · Zbl 0227.35001
[17] Luo, Z.; Levesley, J., Technical Report (1997)
[18] Luo, Z.; Levesley, J., Error estimates and convergence rates for variational Hermite interpolation, J. Approx. Theory, 95, 264-279 (1998) · Zbl 0915.41002
[19] Madych, W. R.; Nelson, S. A., Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl., 4, 77-89 (1988) · Zbl 0703.41008
[20] Madych, W. R.; Nelson, S. A., Multivariate interolation and conditionally positive definite functions, II, Math. Comp., 54, 211-230 (1990) · Zbl 0859.41004
[21] Müller, C., Spherical Harmonics. Spherical Harmonics, Lecture Notes in Mathematics, 17 (1966), Springer-Verlag: Springer-Verlag Berlin/Heidelberg · Zbl 0138.05101
[22] Narcowich, F. J., Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold, J. Math. Anal. Appl., 190, 165-193 (1995) · Zbl 0859.58032
[23] Schaback, R., Improved error bounds for scattered data interpolation by radial basis functions, Math. Comp., 68, 201-216 (1999) · Zbl 0917.41011
[24] Schreiner, M., On a new condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc., 125, 531-539 (1997) · Zbl 0863.43002
[25] Svensson, S. L., Pseudodifferential operators—A new approach to the boundary problems of physical geodesy, Manuscr. Geod., 8, 1-40 (1983) · Zbl 0529.35076
[26] Wahba, G., Spline interpolation and smoothing on the sphere, SIAM J. Sci. Statist. Comput., 2, 5-16 (1981) · Zbl 0537.65008
[27] Wendland, H., Meshless Galerkin methods using radial basis functions, Math. Comp., 68, 1521-1531 (1999) · Zbl 1020.65084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.