×

Black hole statistics. (English) Zbl 0972.83566

Summary: The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather, they obey an exotic variety of particle statistics known as “infinite statistics” which resembles that of distinguishable particles and is realized by a q deformation of the quantum commutation relations.

MSC:

83C57 Black holes
81S05 Commutation relations and statistics as related to quantum mechanics (general)
83C47 Methods of quantum field theory in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. W. Hawking, Commun. Math. Phys. 43 pp 199– (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[2] S. W. Hawking, Phys. Rev. D 14 pp 2460– (1976) · doi:10.1103/PhysRevD.14.2460
[3] G. W. Gibbons, Commun. Math. Phys. 44 pp 245– (1975) · doi:10.1007/BF01609829
[4] J. Preskill, Mod. Phys. Lett. A 6 pp 2353– (1991) · Zbl 1020.83620 · doi:10.1142/S0217732391002773
[5] C. G. Callan, Phys. Rev. D 45 pp R1005– (1992) · doi:10.1103/PhysRevD.45.R1005
[6] D. Finkelstein, J. Math. Phys. 9 pp 1762– (1968) · Zbl 0167.56205 · doi:10.1063/1.1664510
[7] A. P. Balachandran, Commun. Math. Phys. 115 pp 421– (1988) · Zbl 0668.55016 · doi:10.1007/BF01218018
[8] J. L. Friedman, Phys. Rev. Lett. 44 pp 1100– (1980) · doi:10.1103/PhysRevLett.44.1100
[9] J. L. Friedman, Gen. Rel. Grav. 14 pp 615– (1982)
[10] D. Garfinkle, Phys. Lett. B 256 pp 146– (1991) · doi:10.1016/0370-2693(91)90665-D
[11] , in: Fields and Geometry, Proceedings of the 22nd Karpacz Winter School of Theoretical Physics, Karpacz, Poland, 17 February–1 March 1986 (1986)
[12] T. Banks, Phys. Rev. D 47 pp 4476– (1993) · doi:10.1103/PhysRevD.47.4476
[13] J. Friedman, Phys. Rev. Lett. 71 pp 1486– (1993) · Zbl 0934.83033 · doi:10.1103/PhysRevLett.71.1486
[14] M. S. Morris, Phys. Rev. Lett. 61 pp 1446– (1988) · doi:10.1103/PhysRevLett.61.1446
[15] S. Doplicher, Commun. Math. Phys. 23 pp 199– (1971) · doi:10.1007/BF01877742
[16] S. Doplicher, Commun. Math. Phys. 35 pp 49– (1974) · doi:10.1007/BF01646454
[17] O. W. Greenberg, Phys. Rev. Lett. 64 pp 705– (1990) · Zbl 1050.81571 · doi:10.1103/PhysRevLett.64.705
[18] O. W. Greenberg, Phys. Rev. D 43 pp 4111– (1991) · doi:10.1103/PhysRevD.43.4111
[19] J. Cuntz, Commun. Math. Phys. 57 pp 173– (1977) · Zbl 0399.46045 · doi:10.1007/BF01625776
[20] A. Yu. Ignatiev, Sov. J. Nucl. Phys. 46 pp 444– (1987)
[21] O. W. Greenberg, Phys. Rev. Lett. 59 pp 2507– (1987) · doi:10.1103/PhysRevLett.59.2507
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.