×

Generalized symmetries and \(w_\infty\) algebras in three-dimensional Toda field theory. (English) Zbl 0972.81559

Summary: After establishing a formal theory for getting solutions of one type of high-dimensional partial differential equation, two sets of generalized symmetries of the 3D Toda theory, which arises from a particular reduction of the 4D self-dual gravity equation, are obtained concretely by a simple formula. Each set of symmetries constitutes a generalized \(w_\infty\) algebra which contains three types of the usual \(w_\infty\) algebras as special cases. Some open questions are discussed.

MSC:

81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. N. Pope, Phys. Lett. B 236 pp 173– (1990) · doi:10.1016/0370-2693(90)90822-N
[2] C. N. Pope, Nucl. Phys. B339 pp 191– (1990) · doi:10.1016/0550-3213(90)90539-P
[3] D. J. Gross, Phys. Rev. Lett. 64 pp 127– (1990) · Zbl 1050.81610 · doi:10.1103/PhysRevLett.64.127
[4] M. Douglas, Nucl. Phys. B335 pp 635– (1990) · doi:10.1016/0550-3213(90)90522-F
[5] M. Douglas, Phys. Lett. B 238 pp 176– (1990) · Zbl 1332.81211 · doi:10.1016/0370-2693(90)91716-O
[6] E. Brezin, Phys. Lett. B 236 pp 144– (1990) · doi:10.1016/0370-2693(90)90818-Q
[7] S-y Lou, Phys. Lett. B 302 pp 261– (1993) · doi:10.1016/0370-2693(93)90394-W
[8] S-y Lou, Phys. Lett. A 175 pp 23– (1993) · doi:10.1016/0375-9601(93)90848-T
[9] I. Bakas, Phys. Lett. B 228 pp 57– (1989) · doi:10.1016/0370-2693(89)90525-X
[10] A. Bilal, Phys. Lett. B 227 pp 406– (1989) · doi:10.1016/0370-2693(89)90951-9
[11] Q. H. Park, Nucl. Phys. B333 pp 267– (1990) · doi:10.1016/0550-3213(90)90231-2
[12] J. Avan, Phys. Lett. A 168 pp 363– (1992) · doi:10.1016/0375-9601(92)90519-R
[13] K. Yamagishi, Phys. Lett. B 259 pp 436– (1991) · doi:10.1016/0370-2693(91)91653-D
[14] A. Bial, Nucl. Phys. B326 pp 222– (1989) · doi:10.1016/0550-3213(89)90441-0
[15] V. Fateev, Nucl. Phys. B280 pp 644– (1987) · doi:10.1016/0550-3213(87)90166-0
[16] V. Fateev, Int. J. Mod. Phys. A 7 pp 853– (1991) · Zbl 0801.17017 · doi:10.1142/S0217751X92000405
[17] I. Bakas, Nucl. Phys. B343 pp 165– (1990)
[18] M. Fukuma, Commun. Math. Phys. 143 pp 371– (1992) · Zbl 0757.35076 · doi:10.1007/BF02099014
[19] D. David, J. Math. Phys. 27 pp 1225– (1986) · Zbl 0598.35117 · doi:10.1063/1.527129
[20] B. Fuchssteiner, Prog. Theor. Phys. 70 pp 1508– (1983) · Zbl 1098.37536 · doi:10.1143/PTP.70.1508
[21] B. Fuchssteiner, Prog. Theor. Phys. 65 pp 861– (1981) · Zbl 1074.58501 · doi:10.1143/PTP.65.861
[22] B. Fuchssteiner, Nonlinear Analysis TMT 3 pp 849– (1979) · Zbl 0419.35049 · doi:10.1016/0362-546X(79)90052-X
[23] A. S. Fokas, Phys. Lett. 86A pp 341– (1981) · doi:10.1016/0375-9601(81)90551-X
[24] D. Olive, Nucl. Phys. B265 pp 469– (1986) · doi:10.1016/0550-3213(86)90169-0
[25] Q. H. Park, Phys. Lett. B 236 pp 423– (1990)
[26] P. J. Olver, in: Applications of Lie Group to Differential Equations Berlin (1986) · doi:10.1007/978-1-4684-0274-2
[27] I. I. Kogan, Mod. Phys. Lett. A 7 pp 3717– (1992) · Zbl 1021.81838 · doi:10.1142/S021773239200313X
[28] K. M. Tamizhmani, J. Math. Phys. 32 pp 2635– (1991) · Zbl 0737.35110 · doi:10.1063/1.529506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.