×

A model of HIV-1 pathogenesis that includes an intracellular delay. (English) Zbl 0942.92017

Summary: Mathematical modeling combined with experimental measurements have yielded important insights into HIV-1 pathogenesis. For example, data from experiments in which HIV-infected patients are given potent antiretroviral drugs that perturb the infection process have been used to estimate kinetic parameters underlying HIV infection. Many of the models used to analyze data have assumed drug treatments to be completely efficacious and that upon infection a cell instantly begins producing virus. We consider a model that allows for less then perfect drug effects and which includes a delay in the initiation of virus production.
We present detailed analysis of this delay differential equation model and compare the results to a model without delay. Our analysis shows that when drug efficacy is less than \(100\%\), as may be the case in vivo, the predicted rate of decline in plasma virus concentration depends on three factors: the death rate of virus producing cells, the efficacy of therapy, and the length of the delay. Thus, previous estimates of infected cell loss rates can be improved upon by considering more realistic models of viral infection.

MSC:

92C50 Medical applications (general)
34K60 Qualitative investigation and simulation of models involving functional-differential equations
92C60 Medical epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D., HIV-1 dynamics in vivo: Virion clearancerate infected cell life-span and viral generation time, Science, 271, 1582 (1996)
[2] Perelson, A. S.; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, D. D., Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387, 188 (1997)
[3] Wei, X.; Ghosh, S. K.; Taylor, M. E.; Johnson, V. A.; Emini, E. A.; Deutsch, P.; Lifson, J. D.; Bonhoeffer, S.; Nowak, M. A.; Hahn, B. H.; Saag, S. S.; Shaw, G. M., Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117 (1995)
[4] Ho, D. D.; Neumann, A. U.; Perelson, A. S.; Chen, W.; Leonard, J. M.; Markowitz, M., Rapid turnover of plasma virions and CD4 lymphocytesin HIV-1 infection, Nature, 373, 123 (1995)
[5] Herz, V. M.; Bonhoeffer, S.; Anderson, R. M.; May, R. M.; Nowak, M. A., Viral dynamics in vivo: Limitations onestimations on intracellular delay and virus decay, Proc. Nat. Acad. Sci. USA, 93, 7247 (1996)
[6] Mittler, J. E.; Sulzer, B.; Neumann, A. U.; Perelson, A. S., Influence of delayed virus production on viral dynamics in HIV-1 infected patients, Math. Biosci., 152, 143 (1998) · Zbl 0946.92011
[7] Wein, L. M.; D’Amato, R. M.; Perelson, A. S., Mathematical considerations of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads, J. Theoret. Biol., 192, 81 (1998)
[8] Grossman, Z.; Feinberg, M.; Kuznetsov, V.; Dimitrov, D.; Paul, W., HIV infection: how effective is drug combinationtreatment?, Immunol. Today, 19, 528 (1988)
[9] Tam, J., Delay effect in a model for virus replication, IMA J. Math. Appl. Med. Biol., 16, 29 (1999) · Zbl 0914.92012
[10] Mittler, J. E.; Markowitz, M.; Ho, D. D.; Perelson, A. S., Refined estimates for HIV-1 clearance rate and intracellular delay, AIDS, 13, 1415 (1999)
[11] P.W. Nelson, J. Mittler, A.S. Perelson, Effect of the eclipse phase of the viral life cycle on estimation of HIV viral dynamic parameters, submitted; P.W. Nelson, J. Mittler, A.S. Perelson, Effect of the eclipse phase of the viral life cycle on estimation of HIV viral dynamic parameters, submitted
[12] Bremermann, H. J., Mechanism of HIV persistence: implications for vaccines and therapy, J. AIDS, 9, 459 (1995)
[13] Stilianakis, N. I.; Boucher, C. A.B.; DeJong, M. D.; VanLeeuwen, R.; Schuurman, R.; DeBoer, R. J., Clinical data sets on human immunodeficiency virus type 1 reverse transcriptase resistant mutants explained by a mathematical model, J. Virol., 71, 161 (1997)
[14] Bonhoeffer, S.; May, R. M.; Shaw, G. M.; Nowak, M. A., Virus dynamics and drug therapy, Proc. Nat. Acad. Sci. USA, 94, 6971 (1997)
[15] Essunger, P.; Perelson, A. S., Modeling HIV infection of CD4+ T-Cell subpopulations, J. Theoret. Biol., 170, 367 (1994)
[16] Kirschner, D. E.; Mehr, R.; Pereson, A. S., The role of the thymus in pediatric HIV-1 infection, J. AIDS, 18, 95 (1998)
[17] Nowak, M. A.; Anderson, R. M.; Boerlijist, M. C.; Bonhoeffer, S.; May, R. M.; McMichael, A. J., HIV-1 evolution and disease progression, Science, 274, 1008 (1996)
[18] Stilianakis, N. I.; Dietz, K.; Schenzle, D., Analysis of a model for the pathogenesis of AIDS, Math. Biosci., 145, 27 (1997) · Zbl 0896.92016
[19] Nowak, M. A.; Bonhoeffer, S.; Shaw, G. M.; May, R. M., Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, J. Theoret. Biol., 184, 205 (1997)
[20] Kirschner, D. E.; Webb, G. F., Understanding drug resistance for monotherapy treatment of HIV infection, Bull. Math. Biol., 59, 763 (1997) · Zbl 0922.92011
[21] P.W. Nelson, Mathematical models of HIV pathogenesis and immunology, PhD thesis, University of Washington, pp. 1-150, 1998; P.W. Nelson, Mathematical models of HIV pathogenesis and immunology, PhD thesis, University of Washington, pp. 1-150, 1998
[22] Perelson, A. S.; Nelson, P. W., Mathematical models of HIV dynamics in vivo, SIAM Review, 41, 3 (1999) · Zbl 1078.92502
[23] Bellman, R.; Cooke, K. L., Differential-Difference Equations (1963), Academic Press: Academic Press New York · Zbl 0118.08201
[24] Pratt, D. M., Analysis of population development in Daphnia at different temperatures, Biol. Bull., 85, 116 (1943)
[25] Taylor, C. E.; Sokal, R. R., Oscillations in housefly population sizes due to time lags, Ecology, 57, 1060 (1976)
[26] MacDonald, N., Time Lags in Biological Models (1970), Springer: Springer Berlin
[27] El’sgol’ts, L. E.; Norkin, S. B., An Introduction to the Theory and Application of Differential Equations with Deviating Arguments (1973), Academic Press: Academic Press New York · Zbl 0287.34073
[28] Igarashi, T.; Brown, C.; Azadegan, A.; Haigwood, N.; Dimitrov, D.; Martin, M. A.; Shibata, R., Human immunodeficiency virus type 1 neutralizing antibodies accelerate clearance of cell-free virions from blood plasma, Nature Med., 5, 211 (1999)
[29] B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J.E. Mittler, M. Markowitz, J.M. Moore, A.S. Perelson, D.D. Ho, Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, Lancet 354 (1999) 1782; B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J.E. Mittler, M. Markowitz, J.M. Moore, A.S. Perelson, D.D. Ho, Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis, Lancet 354 (1999) 1782
[30] Kirschner, D. E.; Webb, G. F., A model for treatment strategy in the chemotherapy of AIDS, Bull. Math. Biol., 58, 367 (1996) · Zbl 0853.92009
[31] McLean, A. R.; Michie, C. A., In vivo estimates of division and death rates of human lymphocytes, Proc. Nat. Acad. Sci. USA, 92, 3707 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.