×

Quasi-periodic solutions of the \(2+1\) dimensional modified Korteweg-de Vries equation. (English) Zbl 0937.35155

Summary: A new \(2 + 1\) dimensional modified Korteweg-de Vries equation is proposed and decomposed into the first two members of the well-known Kaup-Newell hierarchy, which are reduced further into integrable ordinary differential equations in the invariant set produced by the stationary Kaup-Newell equation. The Abel-Jacobi coordinates are introduced to straighten out the flows, from which quasi-periodic solutions of the \(2 + 1\) dimensional modified Korteweg-de Vries equation are obtained in terms of the Riemann theta functions.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35B10 Periodic solutions to PDEs
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C.W. Cao, X.G. Geng, in: C.H. Gu, Y.S. Li, G.Z. Tu (Eds.), Nonlinear Physics, Research Reports in Physics, Springer, Berlin, 1990, pp. 68-78.; C.W. Cao, X.G. Geng, in: C.H. Gu, Y.S. Li, G.Z. Tu (Eds.), Nonlinear Physics, Research Reports in Physics, Springer, Berlin, 1990, pp. 68-78.
[2] Cao, C. W., Sci. China A, 33, 528 (1990)
[3] Cao, C. W.; Geng, X. G., J. Phys. A: Math. Gen., 23, 4117 (1990)
[4] Antonowicz, M.; Rauch-Wojciechowski, S., J. Phys. A: Math. Gen., 24, 5043 (1991)
[5] Antonowicz, M.; Rauch-Wojciechowski, S., J. Math. Phys., 33, 2115 (1992)
[6] Konopelchenko, B.; Dubrovsky, V., Phys. Lett., 102A, 45 (1984)
[7] Konopelchenko, B.; Strampp, W., Phys. Lett. A, 157, 17 (1991)
[8] Konopelchenko, B.; Strampp, W., J. Phys. A: Math. Gen., 25, 4399 (1992)
[9] Cheng, Y.; Li, Y. S., Phys. Lett. A, 157, 22 (1991)
[10] Cheng, Y.; Li, Y. S., J. Phys. A: Math. Gen., 25, 419 (1992)
[11] Kaup, D. J.; Newell, A. C., J. Math. Phys., 19, 799 (1978)
[12] C.L. Siegel, Topics in Complex Function Theory, vol. 2, Wiley, New York, 1971.; C.L. Siegel, Topics in Complex Function Theory, vol. 2, Wiley, New York, 1971. · Zbl 0211.10501
[13] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1994.; P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1994. · Zbl 0836.14001
[14] S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons, The Inverse Scattering Methods, Consultants Bureau, New York, 1984.; S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons, The Inverse Scattering Methods, Consultants Bureau, New York, 1984. · Zbl 0598.35002
[15] A.C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985.; A.C. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985.
[16] Date, E., Prog. Theor. Phys., 59, 265 (1978)
[17] Tracy, E. R.; Chen, H. H.; Lee, Y. C., Phys. Rev. Lett., 53, 218 (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.