×

Generalized Watson’s summation formula for \(_3F_2(1)\). (English) Zbl 0903.33004

A summation formula for \({_3F_2}(^{a,b,c}_{d,2c}| 1)\) was given by G. N. Watson and functions of the type \(f_{i,j}(a,b,c)\equiv {_3F_2}(^{a,b,c}_{d+{1\over 2}i,2c+j}| 1)\) were later studied by others. In this paper, the analytical formula \[ f_{i,j}(a,b,c)\equiv P_i(X^{(0)}_\mu T^{(0)}_{ij}- X^{(\ell)}_\mu T^{(\ell)}_{ij}),\;R(2c- a-b)> - i-2j-1, \] where \(\mu=| i|\text{ mod }2\), \(T^{(\ell)}_{i,j}= A_{i,j}Q^{(\ell)}_i+ B_{i,j} R^{(1-\ell)}_i\) \((\ell= 0,1)\), \[ P_i= P_i(a, b,c)= 2^{a+ b+| i|-2}(-1)^{[{| i|\over 2}]}{\Gamma(d+{1\over 2}| i|)\Gamma(c+ {1\over 2}) \Gamma(c- d-{1\over 2}| i|+ 1)\over \Gamma({1\over 2}) \Gamma(a)\Gamma(b)}, \]
\[ X^{(\ell)}_\mu= X^{(\ell)}_\mu(a, b,c):= {\Gamma({1\over 2}a+{1\over 2}\ell) \Gamma({1\over 2} b+{1\over 2}\mu+{1\over 2}\ell)\over \Gamma(c-{1\over 2} a+{1\over 2}\ell+{1\over 2}) \Gamma(c-{1\over 2}b- {1\over 2}\mu+{1\over 2}\ell+{1\over 2})}\quad (\ell= 0,1), \]
\[ Q^{(\ell)}_i= \sum^{[(| i|- \ell)/2]}_{m= 0} {({1\over 2} a- c+ m)\ell\over ({1\over 2} b+{1\over 2}| i|-{1\over 2}- m)\ell} \alpha_{i,2m+\ell} \beta^{(i)}_{\ell, m}\quad (\ell= 0,1), \] \(\alpha_{ik}\) and \(\beta_{im}^\ell\) have certain values and \(A_{ij}\), \(B_{ij}\) are particular solutions of the difference equation in \(j\) (\(i\) being a parameter) \[ \begin{split} (j+ 2c-a)(j+ 2c- b)(j+ c)E_{j+ 1}=\\ (j+ 2c)[(j+ 2c- d)(2j+ 2c- d)+\textstyle{{1\over 2}} i(j+ 2c- 1)- (a- d)_2]E_j-\\ (j+ 2c- 1)_2(j+ c- d+\textstyle{{1\over 2}} i) E_{j- 1} (j\in\mathbb{Z}),\end{split} \] obtained for the initial values \(E_0= 1\), \(E_1= 1\), and \(E_0= 0\), \(E_1= 1\) respectively, has been obtained for \(f_{i,j}\) with fixed \(j\) and arbitrary \(i\in\mathbb{Z}\), with the help of a recurrence relation. A corollary is derived and five results derived from the corollary with the help of a program written in Maple, are given as examples. A special case of \({_3F_2}(^{-2n- p,\alpha+ 2n+p,c}_{{1\over 2}\alpha+{1\over 2}i+{1\over 2}, 2c+ j}| 1)\) for \(n= 0,1,\dots\); \(p= 0,1\) and \(i\), \(j\in\mathbb{Z}\) is mentioned and it is shown that for any \(i\), \(j\in \mathbb{Z}\), \[ g_{i,j}(a, c,e)= {\Gamma(e)\Gamma(1+ i+ 2c- e)\Gamma(c)\over \Gamma(a)\Gamma(1+ i- a+ c)\Gamma(2c- j)} f_{i,j}(e- a, 1+ i+ 2c- a- e,c-j) \] and a formula implied by the above results is given. A theorem, followed by an example, is also proved to show that the computation of \({_3F_2}(^{a,b,c}_{1+ i+ a-b, 1+ i+ j+ a-c}| 1)\) for integral \(i\), \(j\) can be reduced to the evaluation of \(f_{i,j}\). A collection of forms for \(A_{i,j}\) and \(B_{i,j}\) (\(j\in\mathbb{Z}\) and \(-2\leq j\leq 3\)) is given at the end.

MSC:

33C20 Generalized hypergeometric series, \({}_pF_q\)

Software:

Maple
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bailey, W. N., Contiguous hypergeometric functions of the type \(_3F_2(1)\), (Proc. Glasgow Math. Assoc., 2 (1954)), 62-65 · Zbl 0056.06702
[2] Char, B. W.; Geddes, K. O.; Gonnet, G. H.; Leong, B. L.; Monagan, M. B.; Watt, S. M., Maple V Language Reference Manual (1991), Springer: Springer New York · Zbl 0758.68038
[3] (Erdélyi, A., Higher Transcendental Functions (1953), McGraw-Hill: McGraw-Hill New York) · Zbl 0051.30303
[4] Lavoie, J. L., Some summation formula for the series \(_3F_2\), Math. Comp., 49, 269-274 (1987) · Zbl 0637.33002
[5] Lavoie, J. L., Notes on a paper by J.B. Miller, J. Austral. Soc. B, 29, 216-220 (1987) · Zbl 0625.92027
[6] Lavoie, J. L.; Grondin, F.; Rathie, A. K., Generalizations of Watson’s theorem on the sum of a \(_3F_2\), Indian J. Math., 34, 23-32 (1992) · Zbl 0793.33005
[7] Lavoie, J. L.; Grondin, F.; Rathie, A. K., Generalizations of Whipple’s theorem on the sum of a \(_3F_2\), J. Comput. Appl. Math., 72, 293-300 (1996) · Zbl 0853.33005
[8] Lavoie, J. L.; Grondin, F.; Rathie, A. K.; Arora, K., Generalizations of Dixon’s theorem on the sum of a \(_3F_2\), Math. Comput., 62, 267-276 (1994) · Zbl 0793.33006
[9] Luke, Y. L., Mathematical Functions and Their Approximations (1975), Academic Press: Academic Press New York · Zbl 0351.33007
[10] Petkovšek, M.; Wilf, H. S.; Zeilberger, D., \(A = B (1996)\), A.K. Peters: A.K. Peters Wellesley, MS
[11] Rainville, E. D., Special Functions (1960), Macmillan: Macmillan New York · Zbl 0050.07401
[12] A.K. Rathie, V. Nagar, G.C. Chhajer, A summation formula for the series \(_3F_2\); A.K. Rathie, V. Nagar, G.C. Chhajer, A summation formula for the series \(_3F_2\) · Zbl 1059.33501
[13] Slater, L. J., Generalized Hypergeometric Functions (1966), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0135.28101
[14] Wimp, J., Irreducible recurrences and representation theorems for \(_3F_2(1)\), Int. J. Comput. Math. Appl., 9, 663-678 (1983) · Zbl 0523.33002
[15] Zeilberger, D., Gauss’s \(_2F_1(1)\) cannot be generalized to \(_2F_1(x)\), J. Comput. Appl. Math., 39, 379-382 (1992) · Zbl 0764.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.