×

The transferable belief model. (English) Zbl 0807.68087

Summary: We describe the transferable belief model, a model for representing quantified beliefs based on belief functions. Beliefs can be held at two levels: (1) a credal level where beliefs are entertained and quantified by belief functions, (2) a pignistic level where beliefs can be used to make decisions and are quantified by probability functions. The relation between the belief function and the probability function when decisions must be made is derived and justified. Four paradigms are analyzed in order to compare Bayesian, upper and lower probability, and the transferable belief approaches.

MSC:

68T30 Knowledge representation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aczel, J., (Lectures on Functional Equations and Their Applications (1966), Academic Press: Academic Press New York) · Zbl 0139.09301
[2] Black, P. K., Is Shafer general Bayes?, (Proceedings Third Workshop on Uncertainty in Artificial Intelligence. Proceedings Third Workshop on Uncertainty in Artificial Intelligence, Seattle, WA (1987)), 2-9
[3] (Clarke, M. R.B.; Froidevaux, C.; Gregoire, E.; Smets, P., Special Issue on Uncertainty, Conditional and Non Monotonicity: Positions and Debates in Non-Standard Logics. Special Issue on Uncertainty, Conditional and Non Monotonicity: Positions and Debates in Non-Standard Logics, J. Appl. Non-Classical Logics, 1 (2) (1991)), 103-310 · Zbl 0907.03002
[4] Cox, R. T., Probability, frequency and reasonable expectation, Amer. J. Phys., 14, 1-13 (1946) · Zbl 0063.01001
[5] DeGroot, M. H., Optimal statistical decisions (1970), McGraw-Hill: McGraw-Hill New York · Zbl 0225.62006
[6] Dubois, D.; Garbolino, P.; Kyburg, H. E.; Prade, H.; Smets, P., Quantified uncertainty, J. Appl. Non-Classical Logics, 1, 105-197 (1991) · Zbl 0925.03112
[7] Dubois, D.; Prade, H., On several representations of an uncertain body of evidence, (Gupta, M. M.; Sanchez, E., Fuzzy Information and Decision Processes (1982), North-Holland: North-Holland Amsterdam), 167-181
[8] Dubois, D.; Prade, H., Focusing versus updating in belief function theory, (Internal Report IRIT/91-94/R (1991), IRIT, Université P. Sabatier: IRIT, Université P. Sabatier Toulouse, France) · Zbl 0741.68091
[9] Ekelof, P. O., Rättegång, IV (1982), Stockholm, 5th ed.
[10] Fisher, R. A., Conclusions fiduciaires, Ann. l’Inst. Henri Poincaré, 10, 191-213 (1948)
[11] (Gärdenfors, P.; Hansson, B.; Sahlin, N. E., Evidentiary Value: Philosophical, Judicial and Psychological Aspects of a Theory (1983), C.W.K. Gleerups: C.W.K. Gleerups Lund, Sweden)
[12] Giles, R., Foundation for a possibility theory, (Gupta, M. M.; Sanchez, E., Fuzzy Information and Decision Processes (1982), North-Holland: North-Holland Amsterdam), 183-195, 1982
[13] Hacking, I., (Logic of Statistical Inference (1965), Cambridge University Press: Cambridge University Press Cambridge, England) · Zbl 0133.41604
[14] Hájek, P., Deriving Dempster’s rule, (Proceedings IPMU’92 (1992), Palma de Mallorca: Palma de Mallorca Spain), 73-75
[15] Halpern, J. Y.; Fagin, R., Two views of belief: belief as generalized probability and belief as evidence, Artif. Intell., 54, 275-318 (1992) · Zbl 0762.68055
[16] Hsia, Y.-T., Characterizing belief with minimum commitment, (Proceedings IJCAI-91. Proceedings IJCAI-91, Sydney, Australia (1991)), 1184-1189 · Zbl 0760.68070
[17] Hunter, D., Dempster-Shafer versus probabilistic logic, (Proceedings Third Workshop on Uncertainty in Artificial Intelligence. Proceedings Third Workshop on Uncertainty in Artificial Intelligence, Seattle, WA (1987)), 22-29
[18] Jaffray, J. Y., Application of linear utility theory for belief functions, (Bouchon, B.; Saitta, L.; Yager, R. R., Uncertainty and Intelligent Systems (1988), Springer: Springer Berlin), 1-8
[19] Klawonn, F.; Schwecke, E., On the axiomatic justification of Dempster’s rule of combination, Int. J. Intell. Syst., 7, 469-478 (1990) · Zbl 0761.68091
[20] Klawonn, F.; Smets, P., The dynamic of belief in the transferable belief model and specialization-generalization matrices, (Dubois, D.; Wellman, M. P.; d’Ambrosio, B.; Smets, P., Uncertainty in AI 92 (1992), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 130-137
[21] Kyburg, H. E., Objectives probabilities, (Proceedings IJCAI-87. Proceedings IJCAI-87, Milan, Italy (1987)), 902-904
[22] Kyburg, H. E., Bayesian and non-Bayesian evidential updating, Artif. Intell., 31, 271-293 (1987) · Zbl 0622.68069
[23] Laskey, K. B., Beliefs in belief functions: an examination of Shafer’s canonical examples, (Proceedings Third Workshop on Uncertainty in Artificial Intelligence. Proceedings Third Workshop on Uncertainty in Artificial Intelligence, Seattle, WA (1987)), 39-46
[24] Levi, I., Consonance, dissonance and evidentiary mechanisms, (Gärdenfors, P.; Hansson, B.; Sahlin, N. E., Evidentiary Value: Philosophical, Judicial and Psychological Aspects of a Theory (1983), C.W.K. Gleerups: C.W.K. Gleerups Lund, Sweden), 27-43
[25] Lindley, D. V., The probability approach to the treatment of uncertainty in artificial intelligence and expert systems, Stat. Sci., 2, 17-24 (1987) · Zbl 0955.68507
[26] Nguyen, H. T., On random sets and belief functions, J. Math. Anal. Appl., 65, 531-542 (1978) · Zbl 0409.60016
[27] Nguyen, H. T.; Smets, P., On dynamics of cautious belief and conditional objects, Int. J. Approx. Reasoning, 8, 89-104 (1993) · Zbl 0778.68075
[28] Pearl, J., (Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (1988), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA)
[29] Pearl, J., Reasoning with belief functions: an analysis of compatibility, Int. J. Approx. Reasoning, 4, 363-390 (1990) · Zbl 0706.68086
[30] Ramsey, F. P., Truth and probability, (Kyburg, H. E.; Smokler, H. E., Studies in Subjective Probability (1931), Wiley: Wiley New York), 61-92 · Zbl 1152.01305
[31] Ruspini, E. H., The logical foundations of evidential reasoning, (Tech. Note 408 (1986), SRI International: SRI International Menlo Park, CA)
[32] Saffiotti, A., An AI view of the treatment of uncertainty, Knowl. Eng. Rev., 2, 75-98 (1988)
[33] Shafer, G., (A Mathematical Theory of Evidence (1976), Princeton University Press: Princeton University Press Princeton, NJ)
[34] Shafer, G., Perspectives in the theory and practice of belief functions, Int. J. Approx. Reasoning, 4, 323-362 (1990) · Zbl 0714.62001
[35] Shafer, G.; Shenoy, P. P.; Mellouli, K., Propagating belief functions in qualitative Markov trees, Int. J. Approx. Reasoning, 1, 349-400 (1987) · Zbl 0641.68158
[36] Shafer, G.; Tversky, A., Languages and designs for probability, Cogn. Sci., 9, 309-339 (1985)
[37] Smets, P., Un modèle mathématico-statistique simulant le processus du diagnostic médical, (Doctoral Dissertation (1978), Université Libre de Bruxelles: Université Libre de Bruxelles Bruxelles, Belgium), Available through University Microfilm International, 30-32 Mortimer Street, London W1N 7RA, Thesis 80-70,003
[38] Smets, P., Upper and lower probability functions versus belief functions, (Proceedings International Symposium on Fuzzy Systems and Knowledge Engineering. Proceedings International Symposium on Fuzzy Systems and Knowledge Engineering, Guangzhou, China (1987)), 17-21
[39] Smets, P., Belief functions, (Smets, P.; Mamdani, A.; Dubois, D.; Prade, H., Non-standard Logics for Automated Reasoning (1988), Academic Press: Academic Press London), 253-286
[40] Smets, P., The combination of evidence in the transferable belief model, IEEE Trans. Pattern Anal. Mach. Intell., 12, 447-458 (1990)
[41] Smets, P., The transferable belief model and possibility theory, (Proceedings NAFIPS-90 (1990)), 215-218
[42] Smets, P., Constructing the pignistic probability function in a context of uncertainty, (Henrion, M.; Shachter, R. D.; Kanal, L. N.; Lemmer, J. F., Uncertainty in Artificial Intelligence, 5 (1990), North-Holland: North-Holland Amsterdam), 29-40 · Zbl 0721.68065
[43] Smets, P., The transferable belief model and other interpretations of Dempster-Shafer’s model, (Proceedings 6th Conference on Uncertainty in Artificial Intelligence. Proceedings 6th Conference on Uncertainty in Artificial Intelligence, Cambridge, MA (1990))
[44] Smets, P., Varieties of ignorance, Inf. Sci., 57-58, 135-144 (1991)
[45] Smets, P., The nature of the unnormalized beliefs encountered in the transferable belief model, (Dubois, D.; Wellman, M. P.; d’Ambrosio, B.; Smets, P., Uncertainty in AI 92 (1992), Morgan Kaufmann: Morgan Kaufmann San Mateo, CA), 292-297
[46] Smets, P., The transferable belief model and random sets, Int. J. Intell. Syst., 7, 37-46 (1992) · Zbl 0768.68200
[47] Smets, P., Resolving misunderstandings about belief functions: a response to the many criticisms raised by J. Pearl, Int. J. Approx. Reasoning, 6, 321-344 (1992)
[48] Smets, P., Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem, Int. J. Approx. Reasoning, 9, 1-35 (1993) · Zbl 0796.68177
[49] Smets, P., An axiomatic justification for the use of belief function to quantify beliefs, (Proceedings IJCAI-93. Proceedings IJCAI-93, Chambery, France (1993)), 598-603
[50] Smith, C. A.B., Consistency in statistical inference and decision, J. Roy. Stat. Soc. B, 23, 1-37 (1961) · Zbl 0124.09603
[51] Williams, P. M., Discussion, (Shafer, G., Belief functions and parametric models. Belief functions and parametric models, J. Roy. Stat. Soc. B, 44 (1982)), 322-352
[52] Wilson, N., Decision making with belief functions and pignistic probabilities, (Clarke, M.; Kruse, R.; Moral, S., Symbolic and Quantitative Approaches to Reasoning Under Uncertainty (1993), Springer: Springer Berlin), 364-371
[53] Wong, S. K.M.; Yao, Y. Y.; Bollmann, P.; Bürger, H. C., Axiomatization of qualitative belief structure, IEEE Trans. Syst. Man Cybern., 21, 726-734 (1992) · Zbl 0737.60006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.