×

Dynamic theory of quasilinear parabolic systems. III: Global existence. (English) Zbl 0702.35125

[For part I see Nonlinear Anal., Theory Methods Appl. 12, No.9, 895-919 (1988; Zbl 0666.35043). Part II (to appear).]
We consider quasilinear reaction-diffusion systems of the form \[ (*)\quad \partial_ tu-\partial_ j(a_{jk}(x,t,u)\partial_ ku)=f(x,u,\partial u) \] together with natural (nonlinear) boundary conditions, where u is vector valued. If the matrices \(a_{jk}\) are of a suitable triangular form and f is affine in \(\partial u\) it is shown that (*) possesses a unique global solution provided an a priori bound in the \(L_{\infty}\)-norm is known to exist. In general, that is, if the \(a_{jk}\) are fully occupied matrices, the same is shown to be true if it is known a priori that some Hölder norm of the solution is bounded.

MSC:

35K57 Reaction-diffusion equations
35B45 A priori estimates in context of PDEs

Citations:

Zbl 0666.35043
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Amann, H.: Periodic solutions of semilinear parabolic equations. In: Cesari, L., Kanan, R., Weinberger, H.F. (eds.) Nonlinear analysis: a collection of papers in honor of Erich H. Rothe, pp. 1-29. New York: Academic Press 1978
[2] Amann, H.: Existence and regularity for semilinear parabolic evolution equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser.XI, 593-676 (1984) · Zbl 0625.35045
[3] Amann, H.: Global existence for semilinear parabolic systems. J. Reine Angew. Math.360, 47-83 (1985) · Zbl 0564.35060 · doi:10.1515/crll.1985.360.47
[4] Amann, H.: Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations. Nonlinear Anal. Theory Methods Appl.12, 895-919 (1988) · Zbl 0666.35043 · doi:10.1016/0362-546X(88)90073-9
[5] Amann, H.: Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Differential and integral equations. (to appear) · Zbl 0729.35062
[6] Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Berlin Heidelberg New York: Springer 1976 · Zbl 0344.46071
[7] Frehse, J.: Remarks on diagonal elliptic systems. In: Hildebrandt, S., Leis, R. (eds.) Partial differential equations and calculus of variations (Lect. Notes Math., vol. 1357, pp. 198-210) Berlin Heidelberg New York: Springer 1988 · Zbl 0669.35040
[8] de Groot, S.R., Mazur, P.: Non-equilibrium thermodynamics. Amsterdam: North-Holland 1962 · Zbl 0111.44301
[9] Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton, N.J.: Princeton University Press. 1983 · Zbl 0516.49003
[10] Giaquinta, M., Struwe, M.: An optimal regularity result for a class of quasilinear parabolic systems. Manuscr. Math.36, 223-239 (1981) · Zbl 0475.35026 · doi:10.1007/BF01170135
[11] Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin Heidelberg New York: Springer 1977 · Zbl 0361.35003
[12] Gröger, K.: AW 1,p -estimate for solutions to mixed boundaary value problems for second order elliptic equations. Math. Ann.284, to appear (1989) · Zbl 0646.35024
[13] Hurle, D.T.J., Jakeman, E.: Soret-driven thermosolutial convection. J. Fluid Mech.47, 667-687 (1971) · doi:10.1017/S0022112071001319
[14] Krbec, M.: OnL p -estimates for solutions of elliptic boundary value problems. Commentat Math. Univ. Carol.17, 2, 363-375 (1976) · Zbl 0326.35027
[15] Kufner, A., John, O., Fu?ik, S.: Function spaces. Prag: Academia 1977
[16] Lady?enskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type. Providence, R.I.: Am. Math. Soc. 1968
[17] Lady?enskaja, O.A., Ural’ceva, N.N.: A boundary value problem for linear and quasi-linear parabolic equations. AMS Transl. (2)47, 217-299 (1965)
[18] Lady?enskaja, O.A., Ural’ceva, N.N.: A boundary value problem for linear and quasi-linear equations and systems of parabolic type. III. AMS Transl. (2)56, 103-192 (1966)
[19] Lady?enskaja, O.A., Ural’ceva, N.N.: On the Hölder continuity of solutions and their derivatives for linear and quasi-linear equations of elliptic and parabolic types. AMS Trans. (2)61, 207-269 (1967)
[20] Ne?as, J.: Sur la regularité des solutions faibles des équations elliptiques non lineaires. Commentat Math. Univ. Carol.9, 3, 365-413 (1968) · Zbl 0167.10904
[21] Okubo, A.: Diffusion and ecological problems: mathematical models. Biomath. vol. 10, Berlin Heidelberg New York: Springer 1980 · Zbl 0422.92025
[22] Simader, C.G.: On Dirichlet’s boundary value problem ? Theory based on a generalization of gardings inequality. (Lect. Notes Math., vol. 268) Berlin Heidelberg New York: Springer 1972 · Zbl 0242.35027
[23] Sinestrari, E.: Continuous interpolation spaces and spatial regularity in nonlinear Volterra integrodifferential equations. J. Integral Equations5, 287-308 (1983) · Zbl 0519.45013
[24] Stará, J., John, O., Malý, J.: Counterexample to the regularity of weak solution of the quasilinear parabolic system. Commentat Math. Univ. Carol.27, 123-136 (1986) · Zbl 0625.35047
[25] Struwe, M.: A counterexample in regularity theory for parabolic systems. Czech. Math. J.34 (109), 183-188 (1984) · Zbl 0573.35053
[26] Vespri, V.: Analytic semigroups generated inH ?m,p by elliptic variational operators and applications to linear Cauchy problems. (preprint) · Zbl 0679.47024
[27] Ziquian, Y.: Everywhere regularity for solutions to quasilinear elliptic systems of triangular form. In: S.S. Chern (ed.): Partial differential equations. (Lect. Notes Math., vol. 1306, pp. 255-261) Berlin Heidelberg New York: Springer 1987
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.