×

Nonlinear resonances leading to strong pulse attenuation in granular dimer chains. (English) Zbl 1319.70023

Summary: We study nonlinear resonances in granular periodic one-dimensional chains. Specifically, we consider a diatomic (“dimer”) chain composed of alternating “heavy” and “light” spherical beads with no precompression. In a previous work [K. R. Jayaprakash et al., Phys. Rev. E 83, No. 3, 036606 (2011)] we discussed the existence of families of solitary waves in these systems that propagate without distortion of their waveforms. We attributed this dynamical feature to “antiresonance” in the dimer that led to the complete elimination of radiating waves in the trail of the propagating solitary wave. Antiresonances were associated with certain symmetries of the velocity waveforms of the dimer beads. In this work we report on the opposite phenomenon: the break of waveform symmetries, leading to drastic attenuation of traveling pulses due to radiation of traveling waves to the far field. We use the connotation of “resonance” to describe this dynamical phenomenon resulting in maximum amplification of the amplitudes of radiated waves that emanate from the propagating pulse. Each antiresonance can be related to a corresponding resonance in the appropriate parameter plane. We study the nonlinear resonance mechanism numerically and analytically and show that it can lead to drastic attenuation of pulses propagating in the dimer. Furthermore, we estimate the discrete values of the normalized mass ratio between the light and heavy beads of the dimer for which resonances are realized. Finally, we show that by adding precompression the resonance mechanism gradually degrades, as does the capacity of the dimer to passively attenuate propagating pulses.

MSC:

70K30 Nonlinear resonances for nonlinear problems in mechanics
70K60 General perturbation schemes for nonlinear problems in mechanics
70K70 Systems with slow and fast motions for nonlinear problems in mechanics
74J30 Nonlinear waves in solid mechanics
74J35 Solitary waves in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahnert, K., Pikovsky, A.: Compactons and chaos in strongly nonlinear lattices. Phys. Rev. E 79(2), 026209 (2009) · doi:10.1103/PhysRevE.79.026209
[2] Arnold, V.I.: Dynamical Systems III. Encyclopedia of Mathematical Sciences, vol. 3. Springer, Berlin (1988) · doi:10.1007/978-3-662-02535-2
[3] Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory. Springer, New York (1991) · Zbl 0938.34001
[4] Chatterjee, A.: Asymptotic solution for solitary waves in a chain of elastic spheres. Phys. Rev. E 59(5), 5912-5919 (1999) · doi:10.1103/PhysRevE.59.5912
[5] Coste, C., Falcon, E., Fauve, S.: Solitary waves in a chain of beads under Hertz contact. Phys. Rev. E 56(5), 6104-6117 (1997) · doi:10.1103/PhysRevE.56.6104
[6] Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Strongly nonlinear waves in a chain of teflon beads. Phys. Rev. E 72(1), 016603 (2005), pp. 1-9 · doi:10.1103/PhysRevE.72.016603
[7] Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. Phys. Rev. E 73(2), 026610 (2006a), pp. 1-10 · doi:10.1103/PhysRevE.73.026610
[8] Daraio, C., Nesterenko, V.F., Herbold, E.B., Jin, S.: Energy trapping and shock disintegration in a composite granular medium. Phys. Rev. Lett. 96(5), 058002 (2006b), pp. 1-4 · doi:10.1103/PhysRevLett.96.058002
[9] Doney, R.L., Sen, S.: Impulse absorption by tapered horizontal alignments of elastic spheres. Phys. Rev. E 72(4), 041304 (2005a), pp. 1-11 · doi:10.1103/PhysRevE.72.041304
[10] Doney, R. L.; Sen, S., Shock mitigation for blast protection using Hertzian tapered chains, Vancouver, BC, 14-18 November
[11] Doney, R.L., Sen, S.: Decorated, tapered, and highly nonlinear granular chain. Phys. Rev. Lett. 97(15), 155502 (2006), pp. 1-4 · doi:10.1103/PhysRevLett.97.155502
[12] Doney, R.L., Agui, J.H., Sen, S.: Energy partitioning and impulse dispersion in the decorated, tapered, strongly nonlinear granular alignment: a system with many potential applications. J. Appl. Phys. 106, 064905 (2009), pp. 1-13 · doi:10.1063/1.3190485
[13] Harbola, U., Rosas, A., Esposito, M., Lindenberg, K.: Pulse propagation in tapered granular chains: an analytic study. Phys. Rev. E 80(3), 031303 (2009), pp. 1-10 · doi:10.1103/PhysRevE.80.031303
[14] Jayaprakash, K.R., Starosvetsky, Y., Vakakis, A.F.: New family of solitary waves in granular dimer chains with no pre-compression. Phys. Rev. E 83(3), 036606 (2011), pp. 1-11 · doi:10.1103/PhysRevE.83.036606
[15] Jayaprakash, K.R., Vakakis, A.F., Starosvetsky, Y.: Strongly nonlinear traveling waves in granular dimer chains. Mech. Syst. Signal Process. (2012). doi:10.1016/j.ymssp.2012.04.018 · Zbl 1364.35360 · doi:10.1016/j.ymssp.2012.04.018
[16] Job, S., Melo, F., Sokolow, A., Sen, S.: How Hertzian solitary waves interact with boundaries in a one dimensional granular medium. Phys. Rev. Lett. 94(17), 178002 (2005), pp. 1-4 · doi:10.1103/PhysRevLett.94.178002
[17] Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985) · Zbl 0599.73108 · doi:10.1017/CBO9781139171731
[18] Lazaridi, A.N., Nesterenko, V.F.: Observation of a new type of solitary waves in a one-dimensional granular medium. J. Appl. Mech. Tech. Phys. 26(3), 405-408 (1985) · doi:10.1007/BF00910379
[19] Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5), 733-743 (1983) · doi:10.1007/BF00905892
[20] Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, New York (2001) · doi:10.1007/978-1-4757-3524-6
[21] Porter, M.A., Daraio, C., Herbold, E.B., Szelengowicz, I., Kevrekidis, P.G.: Highly nonlinear solitary waves in periodic dimer granular chains. Phys. Rev. E 77(1), 015601(R) (2008), pp. 1-4 · doi:10.1103/PhysRevE.77.015601
[22] Porter, M.A., Daraio, C., Szelengowicz, I., Herbold, E.B., Kevrekidis, P.G.: Highly nonlinear solitary waves in heterogeneous periodic granular media. Physica D 238(6), 666-676 (2009) · Zbl 1160.37410 · doi:10.1016/j.physd.2008.12.010
[23] Potekin, R., Jayaprakash, K.R., McFarland, D.M., Remick, K., Bergman, L.A., Vakakis, A.F.: Experimental study of strongly nonlinear resonances and anti-resonances in granular dimer chains. Exp. Mech. (2012). doi:10.1007/s11340-012-9673-6 · doi:10.1007/s11340-012-9673-6
[24] Remoissenet, M.: Waves Called Solitons. Springer, Berlin (1999) · Zbl 0933.35003 · doi:10.1007/978-3-662-03790-4
[25] Sen, S., Manciu, M.: Solitary wave dynamics in generalized Hertz chains: an improved solution of the equation of motion. Phys. Rev. E 64(5), 056605 (2001), pp. 1-4 · Zbl 1001.74029 · doi:10.1103/PhysRevE.64.056605
[26] Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462, 21-66 (2008) · doi:10.1016/j.physrep.2007.10.007
[27] Sokolow, A., Pfannes, J.M.M., Doney, R.L., Nakagawa, M., Agui, J.H., Sen, S.: Absorption of short duration pulses by small, scalable, tapered granular chains. Appl. Phys. Lett. 87, 254104 (2005), pp. 1-3 · doi:10.1063/1.2149218
[28] Starosvetsky, Y., Vakakis, A.F.: Traveling waves and localized modes in one-dimensional homogeneous granular chains with no pre-compression. Phys. Rev. E 82(2), 026603 (2010), pp. 1-14 · doi:10.1103/PhysRevE.82.026603
[29] Starosvetsky, Y., Jayaprakash, K.R., Vakakis, A.F.: Scattering of solitary waves and excitation of transient breathers in granular media by light intruders. J. Appl. Mech. 79, 011001 (2012), pp. 1-12 · doi:10.1115/1.4003360
[30] Theocharis, G., Kavousanakis, M., Kevrekidis, P.G., Daraio, C., Porter, M.A., Kevrekidis, I.G.: Localized breathing modes in granular crystals with defects. Phys. Rev. E 80(6), 066601 (2009), pp. 1-11 · doi:10.1103/PhysRevE.80.066601
[31] Whitham, G.B.: Linear and Nonlinear Waves. Wiley Interscience, New York (1999) · Zbl 0940.76002 · doi:10.1002/9781118032954
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.