×

A class of delayed viral models with saturation infection rate and immune response. (English) Zbl 1317.34171

Summary: A class of three delayed viral dynamics models with immune response and saturation infection rate are proposed and studied. By constructing suitable Lyapunov functionals, we derive the basic reproduction number \(R_{0}\) and the corresponding immune response reproduction numbers for the viral infection models, and establish that the global dynamics are completely determined by the values of the related basic reproduction number and immune response reproduction numbers.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K25 Asymptotic theory of functional-differential equations
92D25 Population dynamics (general)
92C60 Medical epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Perelson, Dynamics of HIV infection of CD4+ T cells, Mathematical Biosciences 114 (1) pp 81– (1993) · Zbl 0796.92016 · doi:10.1016/0025-5564(93)90043-A
[2] Korobeinikov, Global properties of basic virus dynamics models, Bulletin of Mathematical Biology 66 pp 879– (2004) · Zbl 1334.92409 · doi:10.1016/j.bulm.2004.02.001
[3] Leenheer, Virus dynamics: a global analysis, SIAM Journal on Applied Mathematics 63 (4) pp 1313– (2003) · Zbl 1035.34045 · doi:10.1137/S0036139902406905
[4] Wang, A delayed HIV-1 infection model with Beddington-DeAngelis functional response, Nonlinear Dynamics 62 pp 67– (2010) · Zbl 1209.34102 · doi:10.1007/s11071-010-9699-1
[5] Wang, Global stability and periodic solution of a model for HIV infection of CD4+ T cells, Applied Mathematics and Computation 189 (2) pp 1331– (2007) · Zbl 1117.92040 · doi:10.1016/j.amc.2006.12.044
[6] Liu, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy, Mathematical Biosciences and Engineering 7 pp 677– (2010) · Zbl 1260.92065 · doi:10.3934/mbe.2010.7.675
[7] Perelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review 41 (1) pp 3– (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[8] Wang, Lyapunov function and global properties of virus dynamics with CTL immune response, International Journal of Biomathematics 1 (4) pp 443– (2008) · Zbl 1156.92322 · doi:10.1142/S1793524508000382
[9] Nowak, HIV-1 evolution and disease progression, Science 274 pp 318– (1996) · doi:10.1126/science.274.5289.1008
[10] Nowak, Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, Journal of Theoretical Biology 184 pp 203– (1997) · doi:10.1006/jtbi.1996.0307
[11] Perelson, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271 pp 1582– (1996) · doi:10.1126/science.271.5255.1582
[12] Arnaout, HIV-1 dynamics revisited: biphasic decay by cytotoxic lymphocyte killing?, Proceedings of the Royal Society B: Biological Sciences 265 pp 1347– (2000) · doi:10.1098/rspb.2000.1149
[13] Culshaw, Optimal HIV treatment by maximising immune response, Journal of Mathematical Biology 48 pp 545– (2004) · Zbl 1057.92035 · doi:10.1007/s00285-003-0245-3
[14] Wang, Global stability in a viral infection model with lytic and nonlytic immune response, Computers and Mathematics with Applications 51 pp 1593– (2006) · Zbl 1141.34034 · doi:10.1016/j.camwa.2005.07.020
[15] Nowak, Population dynamics of immune response to persistent viruses, Science 272 pp 74– (1996) · doi:10.1126/science.272.5258.74
[16] Nowak, Virus Dynamics (2000)
[17] Anderson, Non-linear phenomena in host-parasite interactions, Parasitology 99 pp S59-S79– (1989) · doi:10.1017/S0031182000083426
[18] Kajiwara, A note on the stability analysis of pathogen-immune interaction dynamics, Discrete and Continuous Dynamical Systems-Series B 4 (3) pp 615– (2004) · Zbl 1101.92027 · doi:10.3934/dcdsb.2004.4.615
[19] Murase, Stability analysis of pathogen-immune interaction dynamics, Journal of Mathematical Biology 51 pp 247– (2005) · Zbl 1086.92029 · doi:10.1007/s00285-005-0321-y
[20] Wodarz, Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology (2006) · Zbl 1125.92032
[21] Culshaw, A delay-differential equation model of HIV infection of CD4+ T cells, Mathematical Bioscience 165 pp 27– (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[22] Culshaw, A mathematical model of cell-to-cell HIV-1 that includes a time delay, Journal of Mathematical Biology 46 pp 425– (2003) · Zbl 1023.92011 · doi:10.1007/s00285-002-0191-5
[23] Herz, Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proceedings of the National Academy of Sciences USA 93 pp 7247– (1996) · doi:10.1073/pnas.93.14.7247
[24] Mittler, Improved estimates for HIV-1 clearance rate and intracellular delay, AIDS 13 pp 1415– (1999) · doi:10.1097/00002030-199907300-00023
[25] Mittler, Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Mathematical Bioscience 152 pp 143– (1998) · Zbl 0946.92011 · doi:10.1016/S0025-5564(98)10027-5
[26] Nelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Mathematical Bioscience 163 pp 201– (2000) · Zbl 0942.92017 · doi:10.1016/S0025-5564(99)00055-3
[27] Nelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Mathematical Bioscience 179 pp 73– (2002) · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[28] Tam, Delay effect in a model for virus replication, Mathematical Medicine and Biology 16 pp 29– (1999) · Zbl 0914.92012 · doi:10.1093/imammb/16.1.29
[29] Wang, Complex dynamic behavior in a viral model with delayed immune response, Physica D: Nonlinear Phenomena 226 pp 197– (2007) · Zbl 1117.34081 · doi:10.1016/j.physd.2006.12.001
[30] Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular delay, Journal of Mathematical Analysis and Applications 375 (1) pp 75– (2011) · Zbl 1222.34101 · doi:10.1016/j.jmaa.2010.08.055
[31] Hale, Introduction to Functional Differential Equations (1993) · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[32] Li, Global dynamics of an in-host viral model with intracellular delay, Bulletin of Mathematical Biology 72 pp 1492– (2010) · Zbl 1198.92034 · doi:10.1007/s11538-010-9503-x
[33] Zhu, Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay, Discrete and Continuous Dynamical Systems Series B 12 (2) pp 511– (2009) · Zbl 1169.92033
[34] Huang, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math. 70 (7) pp 2693– (2010) · Zbl 1209.92035 · doi:10.1137/090780821
[35] Wang, Global properties of a delayed HIV infection model with CTL immune response, Applied Mathematics and Computation 218 (18) pp 9405– (2012) · Zbl 1245.92036 · doi:10.1016/j.amc.2012.03.024
[36] Nagumo, Uber die Lage der IntegralKurven gewohnlicher Differentialgleichungen, Proceedings of the Physico-Mathematical Society of Japan 24 pp 551– (1942) · Zbl 0061.17204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.