×

Computation of MHD flow due to moving boundaries. (English) Zbl 1400.76098

Summary: A non-iterative numerical scheme is presented which computes in a single iteration the steady, laminar flow of a viscous, incompressible, electrically conducting fluid caused by moving boundaries in the presence of a transverse magnetic field. It also eliminates the possible error induced by taking the value of numerical infinity (representing the unbounded domain of the flow) as a finite number. The scheme is based on implicit use of infinite series of exponentials for velocity components. The issue of convergence of these series is also discussed. An asymptotic solution valid for large values of \(M\), the Hartmann number, and an approximate solution valid for any value of \(M\) are further developed. In particular, the case of axisymmetric magnetohydrodynamic (MHD) flow due to a stretching sheet has been dealt with in some detail. A comparison has been made of the merits of various techniques used in the paper and appropriate conclusions are drawn.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/BF01589285 · Zbl 0399.76043 · doi:10.1007/BF01589285
[2] DOI: 10.1007/BF00036459 · Zbl 0412.76022 · doi:10.1007/BF00036459
[3] DOI: 10.1080/00207169308804222 · Zbl 0798.76015 · doi:10.1080/00207169308804222
[4] DOI: 10.1007/BF01180216 · Zbl 0815.76092 · doi:10.1007/BF01180216
[5] DOI: 10.1016/S0020-7225(97)87427-7 · Zbl 0909.76007 · doi:10.1016/S0020-7225(97)87427-7
[6] DOI: 10.1016/S0020-7225(00)00052-5 · Zbl 1210.76127 · doi:10.1016/S0020-7225(00)00052-5
[7] DOI: 10.1016/S0020-7225(01)00031-3 · Zbl 1211.76039 · doi:10.1016/S0020-7225(01)00031-3
[8] DOI: 10.1016/S0377-0427(02)00744-6 · Zbl 1107.76312 · doi:10.1016/S0377-0427(02)00744-6
[9] DOI: 10.1002/zamm.200310052 · Zbl 1047.76019 · doi:10.1002/zamm.200310052
[10] DOI: 10.1515/IJNSNS.2006.7.4.399 · Zbl 06942218 · doi:10.1515/IJNSNS.2006.7.4.399
[11] DOI: 10.1017/S0305004100012561 · JFM 60.0729.08 · doi:10.1017/S0305004100012561
[12] DOI: 10.1007/BF01587695 · doi:10.1007/BF01587695
[13] DOI: 10.1007/BF01170800 · Zbl 0753.76051 · doi:10.1007/BF01170800
[14] DOI: 10.1016/0093-6413(90)90059-L · Zbl 0727.76003 · doi:10.1016/0093-6413(90)90059-L
[15] DOI: 10.1515/IJNSNS.2007.8.2.179 · Zbl 06942258 · doi:10.1515/IJNSNS.2007.8.2.179
[16] DOI: 10.1016/S0045-7825(99)00018-3 · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[17] DOI: 10.1143/JPSJ.17.1496 · Zbl 0118.43003 · doi:10.1143/JPSJ.17.1496
[18] Lee E. S., Quasilinearization and Invariant Imbedding (1968) · Zbl 0212.17602
[19] Lighthill M. J., Philos. Mag. 40 pp 1179– (1949)
[20] Na T. Y., Computational Methods in Engineering Boundary Value Problems (1979) · Zbl 0456.76002
[21] DOI: 10.1017/S0305004100047630 · doi:10.1017/S0305004100047630
[22] Schlichting H., Boundary-Layer Theory, 8. ed. (2000) · Zbl 0940.76003 · doi:10.1007/978-3-642-85829-1
[23] DOI: 10.1515/IJNSNS.2006.7.1.7 · Zbl 06942151 · doi:10.1515/IJNSNS.2006.7.1.7
[24] DOI: 10.1515/IJNSNS.2006.7.1.15 · Zbl 1401.76018 · doi:10.1515/IJNSNS.2006.7.1.15
[25] Stoer J., Introduction to Numerical Analysis 1, 2. ed. (1921)
[26] DOI: 10.1002/zamm.19210010401 · JFM 48.0968.01 · doi:10.1002/zamm.19210010401
[27] DOI: 10.1063/1.864868 · Zbl 0545.76033 · doi:10.1063/1.864868
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.