×

Cell spreading and motility: A model lamellipod. (English) Zbl 0558.92004

Cells moving in vitro do so by means of a motile appendage, the lamellipod. This is a broad, flat sheet of cytogel which spreads in front of the cell and pulls the cell forward. We present here a mathematical model for lamellipodial motion based on the physical chemistry of actomyosin gels.

MSC:

92B05 General biology and biomathematics
92Cxx Physiological, cellular and medical topics
92F05 Other natural sciences (mathematical treatment)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cooper, M., Keller, R.: Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc. Natl. Acad. Sci. USA 81, 161-164 (1984) · doi:10.1073/pnas.81.1.160
[2] De Gennes, P.: Dynamics of entangled polymer solutions I. The Rouse Model. Macromolecules 9, 587-593 (1976) · doi:10.1021/ma60052a011
[3] Dembo, M., Harlow, F. J., Alt, W.: The biophysics of cell surface motility. In: Cell Surface Dynamics: Concepts and Models, A. Perelson, C. DeLisi, F. Wiegel, (eds.). New York: Marcel Dekker 1984
[4] Flory, P.: Principles of Polymer Chemistry. Itheca, Cornell University Press, 1953.
[5] Johnson, D.: Elastodynamics of gels. J. Chem. Phys. 77, 1531-1539 (1982) · doi:10.1063/1.443934
[6] Korn, E.: Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol. Rev. 62, 672-737 (1982)
[7] Lauffenburger, D.: Influence of external concentration fluctuations on leukocyte chemotactic orientation. Cell Biophys. 4, 177-209 (1983)
[8] Odell, G., Oster, G., Burnside, B., Alberch, P.: The mechanical basis of morphogenesis I: Epithelial folding and invagination. Devel. Biol. 85, 446-462 (1981) · doi:10.1016/0012-1606(81)90276-1
[9] Oster, G., Odell, G.: A mechanochemical model for plasmodial oscillations in Physarum. In: Proc. Workshop on Pattern Formation. W. Jager (ed.). Berlin, Heidelberg, New York: 1984
[10] Oster, G., Odell, G., Alberch, P.: Morphogenesis mechanics and evolution. In: Mathematical Problems in the Life Sciences. Vol. 13. Providence: Amer. Math. Soc., 1980 · Zbl 0458.92002
[11] Schmid-Schönbein, G., Skalak, R.: A continuum mechanical model of leukocytes during protopod formation. J. Biomech. Engrg. 106, 10-18 (1984) · doi:10.1115/1.3138448
[12] Snyderman, R., Goetz, E.: Molecular and cellular mechanisms of leukocyte chemotaxis. Science 213, 83037 (1981) · doi:10.1126/science.6266014
[13] Trinkaus, J.: Cells into Organs: Forces that Shape the Embryo. (2nd Ed.). Englewood Cliffs, NJ: Prentice Hall, 1984
[14] Zigmond, S.: Ability of polymorphonucluear leukocytes to orient in gradients of J. Cell Biol. 75, 606-616 (1977) · doi:10.1083/jcb.75.2.606
[15] Zigmond, S.: Chemotaxis by polymorphonuclear leukocytes. J. Cell Biol. 77, 269-287 (1978) · doi:10.1083/jcb.77.2.269
[16] Zigmond, S., Sullivan, S., Lauffenburger, D.: Kinetic analysis of chemotactic peptide receptor modulation. J. Cell Biol. 92, 34-43 (1982) · doi:10.1083/jcb.92.1.34
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.