×

A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. (English) Zbl 1388.76252

Summary: A balanced force refined level set grid method for two-phase flows on structured and unstructured flow solver grids is presented. To accurately track the phase interface location, an auxiliary, high-resolution equidistant Cartesian grid is introduced. In conjunction with a dual-layer narrow band approach, this refined level set grid method allows for parallel, efficient grid convergence and error estimation studies of the interface tracking method. The Navier-Stokes equations are solved on an unstructured flow solver grid with a novel balanced force algorithm for level set methods based on the recently proposed method by M. M. Francois et al. [ibid. 213, No. 1, 141–173 (2006; Zbl 1137.76465)] for volume of fluid methods on structured grids. To minimize spurious currents, a second order converging curvature evaluation technique for level set methods is presented. The results of several different test cases demonstrate the effectiveness of the proposed method, showing good mass conservation properties and second order converging spurious current magnitudes.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76Txx Multiphase and multicomponent flows

Citations:

Zbl 1137.76465

Software:

CHIMPS; PROST
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adalsteinsson, D.; Sethian, J. A., A fast level set method for propagating interfaces, J. Comput. Phys., 118, 269-277 (1995) · Zbl 0823.65137
[2] Adalsteinsson, D.; Sethian, J. A., The fast construction of extension velocities in level set methods, J. Comput. Phys., 148, 2-22 (1999) · Zbl 0919.65074
[3] J.J. Alonso, S. Hahn, F. Ham, M. Herrmann, G. Iaccarino., G. Kalitzin, P. LeGresley, K. Mattsson, G. Medic, P. Moin, H. Pitsch, J. Schluter, M. Svard, E.V. der Weide, D. You, X. Wu, CHIMPS: a high-performance scalable module for multi-physics simulation, in: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, No. 2006-5274 in AIAA-Paper, 2006.; J.J. Alonso, S. Hahn, F. Ham, M. Herrmann, G. Iaccarino., G. Kalitzin, P. LeGresley, K. Mattsson, G. Medic, P. Moin, H. Pitsch, J. Schluter, M. Svard, E.V. der Weide, D. You, X. Wu, CHIMPS: a high-performance scalable module for multi-physics simulation, in: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, No. 2006-5274 in AIAA-Paper, 2006.
[4] Anderson, A.; Zheng, X.; Cristini, V., Adaptive unstructured volume remeshing - I: the method, J. Comput. Phys., 208, 2, 616-625 (2005) · Zbl 1075.65119
[5] Bell, J. B.; Colella, P.; Glaz, H. M., A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85, 2, 257-283 (1989) · Zbl 0681.76030
[6] Bell, J. B.; Marcus, D. L., A second-order projection method for variable-density flows, J. Comput. Phys., 101, 334-348 (1992) · Zbl 0759.76045
[7] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[8] R.E. Bridson, Computational aspects of dynamic surfaces, Ph.D. thesis, Stanford University, 2003.; R.E. Bridson, Computational aspects of dynamic surfaces, Ph.D. thesis, Stanford University, 2003.
[9] Chopp, D. L., Computing minimal surfaces via level set curvature flow, J. Comput. Phys., 106, 1, 77-91 (1993) · Zbl 0786.65015
[10] Chopp, D. L., Some improvements of the fast marching method, SIAM J. Sci. Comput., 23, 230-244 (2001) · Zbl 0991.65105
[11] Coyajee, E.; Herrmann, M.; Boersma, J. B., Simulation of dispersed two-phase flow using a coupled volume-of-fluid/level-set method. Simulation of dispersed two-phase flow using a coupled volume-of-fluid/level-set method, Proceedings of the 2004 Summer Program (2004), Center for Turbulence Research: Center for Turbulence Research Stanford, CA
[12] Engquist, B.; Tornberg, A.-K.; Tsai, R., Discretization of dirac delta functions in level set methods, J. Comput. Phys., 207, 207, 28-51 (2005) · Zbl 1074.65025
[13] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I., A hybrid particle level set method for improved interface capturing, J. Comput. Phys., 183, 83-116 (2002) · Zbl 1021.76044
[14] Enright, D.; Losasso, F.; Fedkiw, R., A fast and accurate semi-lagrangian particle level set method, Comput. Struct., 83, 6-7, 479-490 (2005)
[15] Fedkiw, R.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[16] Francois, M. M.; Cummins, S. J.; Dendy, E. D.; Kothe, D. B.; Sicilian, J. M.; Williams, M. W., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J. Comput. Phys., 213, 141-173 (2006) · Zbl 1137.76465
[17] Gerlach, D.; Tomar, G.; Biswas, G.; Durst, F., Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows, Int. J. Heat Mass Transfer, 49, 3-4, 740-754 (2006) · Zbl 1189.76363
[18] Gomez, P.; Hernandez, J.; Lopez, J., On the reinitialization procedure in a narrow-band locally refined level set method for interfacial flows, Int. J. Numer. Methods Eng., 63, 10, 1478-1512 (2005) · Zbl 1086.76559
[19] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, S.; Zaleski, S., Volume of Fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152, 423-456 (1999) · Zbl 0954.76063
[20] Herrmann, M., A domain decomposition parallelization of the fast marching method, (Annual Research Briefs-2003 (2003), Center for Turbulence Research: Center for Turbulence Research Stanford, CA), pp. 213-226
[21] Herrmann, M., A Eulerian level set/vortex sheet method for two-phase interface dynamics, J. Comput. Phys., 203, 2, 539-571 (2005) · Zbl 1143.76559
[22] Houston, B.; Nielsen, M. B.; Batty, C.; Nilsson, O.; Museth, K., Hierarchical RLE level set: a compact and versatile deformable surface representation, ACM Trans. Graph., 25, 1, 151-175 (2006)
[23] Jiang, G.-S.; Peng, D., Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 6, 2126-2143 (2000) · Zbl 0957.35014
[24] Kim, D.; Choi, H., A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids, J. Comput. Phys., 162, 2, 411-428 (2000) · Zbl 0985.76060
[25] Lamb, H., Hydrodynamics (1945), Dover Publications: Dover Publications New York · JFM 26.0868.02
[26] Lekien, F.; Marsden, J., Tricubic interpolation in three dimensions, Int. J. Numer. Methods Eng., 63, 455-471 (2005) · Zbl 1140.76423
[27] Losasso, F.; Fedkiw, R.; Osher, S., Spatially adaptive techniques for level set methods and incompressible flow, Comput. Fluids, 35, 10, 995-1010 (2006) · Zbl 1177.76295
[28] Macklin, P.; Lowengrub, J., An improved geometry-aware curvature discretization for level set methods: application to tumor growth, J. Comput. Phys., 215, 2, 392-401 (2006) · Zbl 1089.92024
[29] Mahesh, K.; Constantinescu, G.; Moin, P., A numerical method for large-eddy simulation in complex geometries, J. Comput. Phys., 197, 1, 215-240 (2004) · Zbl 1059.76033
[30] E. Marchandise, P. Geuzaine, N. Chevaugeon, J.-F. Remacle, A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics, J. Comput. Phys. (available online).; E. Marchandise, P. Geuzaine, N. Chevaugeon, J.-F. Remacle, A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics, J. Comput. Phys. (available online). · Zbl 1118.76040
[31] Marchandise, E.; Remacle, J.-F.; Chevaugeona, N., A quadrature-free discontinuous Galerkin method for the level set equation, J. Comput. Phys., 212, 338-357 (2006) · Zbl 1081.65094
[32] Marmottant, P.; Villermaux, E., On spray formation, J. Fluid Mech., 498, 73-111 (2004) · Zbl 1067.76512
[33] Nielsen, M. B.; Museth, K., Dynamic tubular grid: an efficient data structure and algorithms for high resolution level sets, J. Sci. Comput., 26, 3, 261-299 (2006) · Zbl 1096.65020
[34] Nourgaliev, R. R.; Theofanous, T. G., High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set, J. Comput. Phys., 224, 2, 836-866 (2007) · Zbl 1124.76043
[35] M. Oevermann, R. Klein, M. Berger, J. Goodman, A projection method for two-phase incompressible flow with surface tension and sharp interface resolution, Technical Report, Konrad-Zuse-Zentrum fuer Informationstechnik Berlin, Berlin, Germany, 2000.; M. Oevermann, R. Klein, M. Berger, J. Goodman, A projection method for two-phase incompressible flow with surface tension and sharp interface resolution, Technical Report, Konrad-Zuse-Zentrum fuer Informationstechnik Berlin, Berlin, Germany, 2000.
[36] Osher, S.; Shu, C. W., High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Num. Anal., 28, 4, 907-922 (1991) · Zbl 0736.65066
[37] Peng, D.; Merriman, B.; Osher, S.; Zhao, H.; Kang, M., A PDE-based fast local level set method, J. Comput. Phys., 155, 410-438 (1999) · Zbl 0964.76069
[38] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 220-252 (1977) · Zbl 0403.76100
[39] Popinet, S.; Zaleski, S., A front-tracking algorithm for accurate representation of surface tension, Int. J. Numer. Methods Fluids, 30, 775-793 (1999) · Zbl 0940.76047
[40] Prosperetti, A., Motion of two superposed viscous fluids, Phys. Fluids, 24, 7, 1217-1223 (1981) · Zbl 0469.76035
[41] Puckett, E. G.; Almgren, A. S.; Bell, J. B.; Marcus, D. L.; Rider, W. J., A high-order projection method for tracking fluid interfaces in variable density incompressible flows, J. Comput. Phys., 130, 269-282 (1997) · Zbl 0872.76065
[42] Renardy, Y.; Renardy, M., Prost: a parabolic reconstruction of surface tension for the volume-of-fluid method, J. Comput. Phys., 183, 400-421 (2002) · Zbl 1057.76569
[43] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., 31, 567-603 (1999)
[44] Sethian, J. A., Level Set Methods and Fast Marching Methods (1999), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0929.65066
[45] Shin, S.; Abdel-Khalik, S. I.; Daru, V.; Juric, D., Accurate representation of surface tension using the level contour reconstruction method, J. Comput. Phys., 203, 493-516 (2005) · Zbl 1143.76561
[46] Shu, C. W., Total-variation-diminishing time discretization, SIAM J. Sci. Stat. Comput., 9, 6, 1073-1084 (1988) · Zbl 0662.65081
[47] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys., 83, 32-78 (1989) · Zbl 0674.65061
[48] Sussman, M., A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, J. Comput. Phys., 187, 1, 110-136 (2003) · Zbl 1047.76085
[49] Sussman, M.; Almgren, A. S.; Bell, J. B.; Colella, P.; Howell, L. H.; Welcome, M. L., An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys., 148, 81-124 (1999) · Zbl 0930.76068
[50] Sussman, M.; Ohta, M., Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method, Fluid Dyn. Mater. Proc., 3, 1, 21-36 (2007) · Zbl 1153.76436
[51] Sussman, M.; Puckett, E. G., A coupled level set and volume of fluid method for computing 3d and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162, 2, 301-337 (2000) · Zbl 0977.76071
[52] Sussman, M.; Smereka, P.; Osher, S., A level set method for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146 (1994) · Zbl 0808.76077
[53] Sussman, M.; Smith, K. M.; Hussaini, M. Y.; Ohta, M.; Zhi-Wei, R., A sharp interface method for incompressible two-phase flows, J. Comput. Phys., 221, 2, 469-505 (2007) · Zbl 1194.76219
[54] Sutherland, I. E.; Hodgman, G. W., Reentrant polygon clipping, Commun. ACM, 17, 1, 32-42 (1974) · Zbl 0271.68065
[55] Torres, D. J.; Brackbill, J. U., The point-set method: front-tracking without connectivity, J. Comput. Phys., 165, 2, 620-644 (2000) · Zbl 0998.76070
[56] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759 (2001) · Zbl 1047.76574
[57] van der Pijl, S. P.; Segal, A.; Vuik, C., A mass-conserving level-set method for modelling of multi-phase flows, Int. J. Numer. Methods Fluids, 47, 339-361 (2005) · Zbl 1065.76160
[58] Williams, M. W.; Kothe, D. B.; Puckett, E. G., Convergence and accuracy of continuum surface tension models, (Shyy, W.; Narayanan, R., Fluid Dynamics at Interfaces (1999), Cambridge University Press: Cambridge University Press Cambridge), 294-305 · Zbl 0979.76014
[59] Yang, X.; James, A. J.; Lowengrub, J.; Zheng, X.; Cristini, V., An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids, J. Comput. Phys., 217, 2, 364-394 (2006) · Zbl 1160.76377
[60] Young, Y.-N.; Ham, F. E.; Herrmann, M.; Mansour, N., Interaction between turbulent flow and free surfaces, (Bradshaw, P., Annual Research Briefs-2002 (2002), Center for Turbulence Research: Center for Turbulence Research Stanford, CA), 301-312
[61] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 3, 335-362 (1979) · Zbl 0416.76002
[62] S. Zaleski, Private communication, 2007.; S. Zaleski, Private communication, 2007.
[63] X. Zheng, J. Lowengrub, A. Anderson, V. Cristini, Adaptive unstructured volume remeshing. II: application to two-and three-dimensional level-set simulations of multiphase flow, J. Comput. Phys. 208 (2) (2005) 626-650.; X. Zheng, J. Lowengrub, A. Anderson, V. Cristini, Adaptive unstructured volume remeshing. II: application to two-and three-dimensional level-set simulations of multiphase flow, J. Comput. Phys. 208 (2) (2005) 626-650. · Zbl 1075.65120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.