Result 1 to 20 of 609 total
Using iPads to your advantage. (English)
Math. Teach. Middle Sch. 21, No. 8, 480-483 (2016).
1
Integrating technologies into mathematics: comparing the cases of square roots and integrals. (English)
Aust. Sr. Math. J. 30, No. 1, 4-17 (2016).
2
Integral of radical trigonometric functions revisited. (English)
Math. Enthus. 13, No. 3, 243-254 (2016).
3
Fractional equations. How to use intra-classroom grouping to prepare topics demanding many prerequisites. (Bruchgleichungen. Wie man voraussetzungsreiche Themen binnendifferenziert aufbereiten kann.) (German)
PM Prax. Math. Sch. 58, No. 70, 21-24 (2016).
4
STEM education K‒12: perspectives on integration. (English)
Int. J. STEM Educ. 3, No. 1, Paper No. 3, 8 p., electronic only (2016).
5
A case study of a prospective upper secondary mathematics teacher’s professional identity: Who does he want to be? What does he do in practice? (English)
Adams, G. (ed.), Proceedings of the British Society for Research into Learning Mathematics (BSRLM). Vol. 35, No. 3. Proceedings of the day conference, University of Reading, UK, November 7, 2015. London: British Society for Research into Learning Mathematics (BSRLM). 1-6 (2016).
6
Pre-service mathematics teachers’ learning and teaching of activity-based lessons supported with spreadsheets. (English)
Technol. Pedagog. Educ. 25, No. 1, 39-59 (2016).
7
Active and passive technology integration: a novel approach for managing technology’s influence on learning experiences in context-aware learning spaces. (English)
Technol. Pedagog. Educ. 25, No. 1, 19-37 (2016).
8
Designing and integrating purposeful learning in game play: a systematic review. (English)
Educ. Technol. Res. Dev. 64, No. 2, 219-244 (2016).
9
Numerical integration: one step at a time. (English)
PRIMUS, Probl. Resour. Issues Math. Undergrad. Stud. 26, No. 5, 371-392 (2016).
10
Arguments for integrating the arts: artistic engagement in an undergraduate foundations of geometry course. (English)
PRIMUS, Probl. Resour. Issues Math. Undergrad. Stud. 26, No. 4, 356-370 (2016).
11
Instructors’ use of technology in post-secondary undergraduate mathematics teaching: a local study. (English)
Int. J. Math. Educ. Sci. Technol. 47, No. 2, 216-232 (2016).
12
Making mathematics and science integration happen: key aspects of practice. (English)
Int. J. Math. Educ. Sci. Technol. 47, No. 2, 233-255 (2016).
13
Explaining the relationship between number line estimation and mathematical achievement: the role of visuomotor integration and visuospatial skills. (English)
J. Exp. Child Psychol. 145, 22-33 (2016).
14
Applying the integrated trans-contextual model to mathematics activities in the classroom and homework behavior and attainment. (English)
Learn. Individ. Differ. 45, 166-175 (2016).
15
Deriving Simpson’s rule using Newton interpolation. (English)
Math. Comput. Educ. 50, No. 1, 34-41 (2016).
16
Erratum to: “The antiderivative of the Gaussian normal distribution". (Korrektur zum Artikel “Die Stammfunktion der Gaußschen Normalverteilung".) (German)
Wurzel 50, No. 1, 9 (2016).
17
Tablets and CLIL in geometry lessons. (Tablety a CLIL ve výuce geometrie.) (Czech. English summary)
Stud. Sci. Fac. Paedagog. 15, No. 4, 237-243 (2016).
18
Supporting conceptual understanding of the associative and distributive properties through digital gameplay. (English)
J. Comput. Assist. Learn. 31, No. 6, 706-721 (2015).
19
Transforming teachers’ technological pedagogical content knowledge for teaching mathematics with technology through online professional development. (English)
Rogerson, Alan (ed.), The mathematics education for the future project. Proceedings of the 13th international conference ‘Mathematics education in a connected world’, Catania, Sicily, Italy, September 16‒21, 2015. Münster: WTM-Verlag (ISBN 978-3-942197-44-1/pbk; 978-3-942197-86-1/ebook). Conference Proceedings in Mathematics Education 1, 259-267 (2015).
20
Result 1 to 20 of 609 total