History


Help on query formulation
first | previous | 1 | next | last

Result 1 to 19 of 19 total

Certainty in mathematics: is there a problem? (English)
Philos. Math. Educ. J. 28, 22 p., electronic only (2014).
Classification: E20 D20 E50 A30
1
Gödel’s incompleteness and consistency theorems elucidated with principles of abstraction levels, complementarity, and self-reference. (English)
Philos. Math. Educ. J. 27, 25 p., electronic only (2013).
Classification: E30 E20
2
BUG’s Bugbear, Gödel’s proof. (English)
Math. Comput. Educ. 46, No. 2, 138-140 (2012).
Classification: E35
3
Theorems as constructive visions. (English)
Hanna, Gila (ed.) et al., Proof and proving in mathematics education. The 19th ICMI study. Berlin: Springer (ISBN 978-94-007-2128-9/hbk; 978-94-007-2129-6/ebook). New ICMI Study Series 15, 51-66 (2012).
Classification: E50 A30 E40
4
Gödel’s way. Exploits into an undecidable world. (English)
Boca Raton, FL: CRC Press (ISBN 978-0-415-69085-0/pbk; 978-0-203-16957-5/ebook). xxi, 138~p. (2012).
Classification: E25 E35 E65 Reviewer: Florentina Chirteş (Craiova)
5
Kurt Friedrich Gödel (1906-1978). (Croatian)
MAT-KOL (Banja Luka) 17, No. 1, 43-47 (2011).
Classification: E20 E40 A30
6
Did you know it? Goodstein sequences are null sequences ‒ indeed? (Hättest du es gewusst? Goodstein Folgen sind Nullfolgen ‒ wirklich?) (German)
Monoid 30, No. 101, 13-17 (2010).
Classification: I30 E30
7
A concise introduction to mathematical logic. 3rd revised and enlarged ed. (English)
Universitext. London: Springer (ISBN 978-1-4419-1220-6/pbk; 978-1-4419-1221-3/ebook). xxi, 319~p. (2010).
Classification: E35 Reviewer: Siegfried J. Gottwald (Leipzig)
8
The greatest mysteries of mathematics. IX. What is mathematics? (Die größten Rätsel der Mathematik. IX. Was ist Mathematik?) (German)
Spektrum Wiss. 2009, No. 6, 72-78 (2009).
Classification: E20 A30 E30 E60
9
Math bite: ${\bbfQ}$ is not complete. (English)
Math. Mag. 82, No. 4, 293-294 (2009).
Classification: I35
10
Great theorems and beautiful proofs in mathematics. Identity of the beautiful, the general and the applicable. (Große Sätze und schöne Beweise der Mathematik: Identität des Schönen, Allgemeinen, Anwendbaren.) 3rd corrected and expanded ed. (German)
Frankfurt am Main: Harri Deutsch (ISBN 978-3-8171-1822-9/pbk). vi, 204~p. (2009).
Classification: A80 I10 E10 H10 F10 Reviewer: Franz Lemmermeyer (Jagstzell)
11
Foundations of logic and theory of computation. (English)
Texts in Computing 10. London: King’s College Publications (ISBN 978-1-904987-88-8). xii, 337~p. (2008).
Classification: E35 P25
12
Introduction to mathematical logic. A textbook. (Einführung in die mathematische Logik. Ein Lehrbuch.) 3rd revised ed. (German)
Studium. Wiesbaden: Vieweg+Teubner (ISBN 978-3-8348-0578-2/pbk). xxi, 256~p. (2008).
Classification: E35 Reviewer: Siegfried J. Gottwald (Leipzig)
13
Why do we need large cardinal numbers? (Wozu brauchen wir große Kardinalzahlen?) (German)
Math. Semesterber. 53, No. 1, 65-80 (2006).
Classification: E65
14
The reasonable effectiveness of mathematics and its cognitive roots. (English)
Boi, Luciano (ed.), Geometries of nature, living systems and human cognition. New interactions of mathematics with natural sciences and humanities. Hackensack, NJ: World Scientific (ISBN 981-256-474-8/hbk). 351-381 (2005).
Classification: E20 C30 C80
15
Mathematical logic. A course with exercises. Part II. Recursion theory, Gödel’s theorems, set theory, model theory. (English)
Oxford University Press, Oxford (ISBN 0-19-850050-5). 351 p. (2001).
Classification: E30 E60 E40
16
Gödel: a revolution in mathematics. Essay on the scientific and philosophical consequences of Gödel’s theorem. (Gödel: Une révolution en mathématiques. Essai sur les conséquences scientifiques et philosophiques des théorèmes gödeliens.) (French)
Presse Polytechniques et Universitaires Romandes, Lausanne (ISBN 2-88074-449-0). 286 p. (2000).
Classification: E30
17
A survey of mathematical logic. Pt. 2: post-1931. (English)
Math. Gaz. 80, No. 488, 286-297 (1996).
Classification: E35 I95
18
Computability. An introduction to recursive function theory. (English)
Cambridge etc.: Cambridge University Press. X, 251 p. hbk: \sterling 20.00; pbk \sterling 6.75 (1980).
Classification: P25 E35
19
first | previous | 1 | next | last

Result 1 to 19 of 19 total

Valid XHTML 1.0 Transitional Valid CSS!