History


Help on query formulation
first | previous | 1 21 | next | last

Result 1 to 20 of 33 total

Why the golden proportion really is golden. (English)
Aust. Math. Teach. 72, No. 1, 10-14 (2016).
Classification: G40 M80
1
Mathematics in nature. (Mathematik in der Natur.) (German)
Monoid 36, No. 125, 21-22 (2016).
Classification: M60 G40 F60 I30
2
Mathematics in the fine arts ‒ a brief survey of the history. (Mathematik in der Kunst ‒ ein Streifzug durch die Geschichte.) (German)
Mathematik 5 bis 10 32, 40-43 (2015).
Classification: M83 G93
3
“Folding numbers". (“Zahlen falten".) (German)
PM Prax. Math. Sch. 56, No. 59, 21-30 (2014).
Classification: U60 F10 G10
4
Aperiodically ordered sequences and the Perron-Frobenius theorem. II. (Aperiodisch geordnete Folgen und der Satz von Perron-Frobenius. II.) (German)
Wurzel 48, No. 6, 118-125 (2014).
Classification: P20 N70 I30 K20 H60 Reviewer: Peter Dürr (Linkenheim)
5
Selected geometrical constructions. (English)
Šedivý, Ondrej (ed.) et al., Acta Mathematica 17. Proceedings of the 12th Nitra mathematics conference, Department of Mathematics, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Slovakia, June 19, 2014. Nitra: Constantine The Philosopher University in Nitra, Faculty of Natural Sciences (ISBN 978-80-558-0613-6). Prírodovedec 578, 49-54 (2014).
Classification: G80 G40 G90
6
On quartic polynomials with two real inflection points. (Über quartische Polynome mit zwei reellen Wendestellen.) (German)
Mathematikunterricht 60, No. 1, 54-58 (2014).
Classification: I40 I20 G70 F60
7
Math world. The golden and the diamond section. (MatheWelt. Der Goldene und der Diamantene Schnitt.) (German)
Math. Lehren 30, No. 179, pull-out section, 16 p. (2013).
Classification: G43 U63 Reviewer: Renate Stürmer (Zweibrücken)
8
The Pythagorean roots of introductory physics. (English)
Sci. Educ. (Dordrecht) 22, No. 3, 527-542 (2013).
Classification: M50 M80
9
How do sunflowers construct their spiral patterns? (Wie konstruiert die Sonnenblume ihre Spiralmuster?) (German)
Mathematikunterricht 58, No. 1, 28-33 (2012).
Classification: M60 G70 I30 F60
10
The Fibonacci sequence from primary school to the A-levels. (Die Fibonacci-Folge von der Grundschule bis zum Abitur.) (German)
Mathematikunterricht 58, No. 1, 49-55 (2012).
Classification: I30 F60 D30
11
Golden ratio and Fibonacci numbers in literature. (Goldener Schnitt und Fibonacci-Zahlen in der Literatur.) (German)
Mathematikunterricht 58, No. 1, 39-48 (2012).
Classification: I30 F60 A90 M80
12
What do share prices and Fibonacci numbers have in common? (Was haben Aktienkurse und Fibonacci-Zahlen gemeinsam?) (German)
Mathematikunterricht 58, No. 1, 34-38 (2012).
Classification: I30 F60 M30 K90
13
Discoveries at the golden spiral. (Entdeckungen an der Goldenen Spirale.) (German)
Mathematikunterricht 58, No. 1, 24-27 (2012).
Classification: G70 I30 I50 F50 F60
14
Golden section, Fibonacci numbers, and golden figures. (Goldener Schnitt, Fibonacci-Zahlen und Goldene Figuren.) (German)
Mathematikunterricht 58, No. 1, 5-12 (2012).
Classification: G40 I30 F50 F60 A30 N50 M80 H20
15
Design and tracing of post-Byzantine churches in the Florina area, Northwestern Greece. (English)
Nexus Netw. J. 14, No. 3, 495-515 (2012).
Classification: M80
16
Fibonacci pegs and an angel theorem. (English)
Math. Sch. (Leicester) 41, No. 5, 10-11 (2012).
Classification: G40 Reviewer: Peter Dürr (Linkenheim)
17
Fibonacci numbers, spirals, golden angles. (Fibonacci-Zahlen, Spiralen, Goldene Winkel.) (German)
MNU, Math. Naturwiss. Unterr. 65, No. 7, 391-395 (2012).
Classification: M60 F60 G40
18
Golden ratios: the secret of the Great Pyramid. (Goldene Verhältnisse: das Geheimnis der großen Pyramide.) (German)
Didaktikh., Schriftenr. Didakt. Math. Höheren Sch. 44, 14 p. (2011).
Classification: M80 G40 F60 M80
19
The golden ratio: real-life math. (English)
Math. Teach. Middle Sch. 16, No. 7, 438-445 (2011).
Classification: M60 M80 F60
20
first | previous | 1 21 | next | last

Result 1 to 20 of 33 total

Valid XHTML 1.0 Transitional Valid CSS!