History


Help on query formulation
first | previous | 1 21 41 61 | next | last

Result 1 to 20 of 69 total

Where does the “carry over" come from? Representing the multiplication of natural numbers in different ways. (Woher kommt das “eins gemerkt"? Multiplikation natürlicher Zahlen auf verschiedene Weise darstellen.) (German)
Mathematik 5 bis 10 36, 6-9 (2016).
Classification: F33 D83
1
Avoidable and unavoidable obstacles while learning arithmetic up to 100. (Vermeidbare und unvermeidbare Hürden beim Erlernen des Rechnens bis 100.) (German)
Steinweg, Anna Susanne (ed.), Entwicklung mathematischer Fähigkeiten von Kindern im Grundschulalter. Tagungsband des AK Grundschule in der GDM 2015. Bamberg: University of Bamberg Press (ISBN 978-3-86309-367-9/pbk; 978-3-86309-368-6/ebook). Mathematikdidaktik Grundschule 5, 25-38 (2015).
Classification: D72 F32
2
Thorough understanding of the written calculation methods. Adding and subtracting the right way. (Gründliches Verständnis der schriftlichen Rechenverfahren. Richtig addieren und subtrahieren.) (German)
Grundschulmagazin 82, No. 4, 38-44 (2014).
Classification: F32
3
In an action-oriented way towards a flexible understanding of place value ‒ an approach from the perspective of artefact-centric activity theory. (Tätigkeitsorientiert zu einem flexiblen Verständnis von Stellenwerten ‒ Ein Ansatz aus Sicht der Artefact-Centric Activity Theory.) (German. English summary)
Ladel, Silke (ed.) et al., Von Audiopodcast bis Zahlensinn. Münster: WTM-Verlag (ISBN 978-3-942197-37-3/pbk). Lernen, Lehren und Forschen mit digitalen Medien in der Primarstufe 2, 151-175 (2014).
Classification: F32 D42 U62 U72
4
Benford’s law. (Das Benfordsche Gesetz.) (German)
Wurzel 48, No. 1, 4-8 (2014).
Classification: K60 K40 M70
5
Why and how to introduce numbers units in 1st- and 2nd-grades. (English)
Ubuz, Behiye (ed.) et al., CERME 8. Proceedings of the eigth congress of the European Society of Research in Mathematics Education, Antalya, Turkey, February 6‒10, 2013. Ankara: Middle East Technical University (ISBN 978-975-429-315-9). 313-322 (2013).
Classification: F32 F22
6
“How many myriads?” or large numbers among the ancient Greeks. (“Combien de myriades?” ou les grands nombres chez les anciens Grecs.) (French)
Quadrature 89, 30-34 (2013).
Classification: A30 F20
7
Analysing a school sequence about the comprehension of the decimal number system within the theory of didactical situations. (Analyse en théorie des situations didactiques d’une séquence visant à évaluer et à renforcer la compréhension du système décimal.) (French. English summary)
Ann. Didact. Sci. Cogn. 17, 87-116 (2012).
Classification: F22 F32
8
Computing with spreadsheets in different base systems. (English)
Spreadsheets Educ. 5, No. 2, 10 p., electronic only (2012).
Classification: F39 U79
9
A study on the understanding of decimal number system of a child with Down syndrome. (Estudio de un alumno con síndrome de Down en la comprensión del sistema de numeración decimal.) (Spanish. English summary)
Edma 0-6, Educ. Mat. Infanc. 1, No. 2, 5-22, electronic only (2012).
Classification: F26 F36 C96 C40
10
The myth of Vedic mathematics via a reflection on the decimal position system. (Il mito della matematica vedica per una riflessione sul sistema posizionale decimale.) (Italian. English summary)
Boll. Docenti Mat. 65, 87-116 (2012).
Classification: A30 F20 F30 C60
11
Ancient Indian square roots: an exercise in forensic paleo-mathematics. (English)
Am. Math. Mon. 119, No. 8, 646-657 (2012).
Classification: A30 Reviewer: Girish Kumar Ramaiah (Bangalore)
12
Mental arithmetic ‒ as quick as an Indian. (Kopfrechnen ‒ so schnell wie ein Inder.) (German)
Monoid 32, No. 112, 5-7 (2012).
Classification: F30 A30
13
Understanding numbers through languages. (Zahlen durch Sprachen verstehen.) (German)
PM Prax. Math. Sch. 54, No. 45, 44-45 (2012).
Classification: F30 C50
14
Understanding the decimal system. (Zrozumieć system dziesiętny.) (Polish)
Matematyka 65, No. 4, 28-29 (2012).
Classification: F32
15
Content analysis in historical texts in mathematics. (Análisis de contenido en textos históricos de matématicas.) (Spanish. English summary)
PNA 6, No. 1, 11-27 (2011).
Classification: A30 F70 G30
16
Why is the learning of elementary arithmetic concepts difficult? semiotic tools for understanding the nature of mathematical objects. (English)
Educ. Stud. Math. 77, No. 2-3, 247-265 (2011).
Classification: C30 D20 F30 F40
17
Artefacts and utilization schemes in mathematics teacher education: place value in early childhood education. (English)
J. Math. Teach. Educ. 14, No. 2, Special Issue: Windows to early childhood mathematics teacher education, 93-112 (2011).
Classification: B51 F31 D41 D21
18
Contributions to a regular practice of mental calculation for learning mathematical concepts in the early years. (Contribuições de uma prática regular de cálculo mental para a aprendizagem de conceitos matemáticos nos anos iniciais.) (Portuguese. English summary)
Educ. Mat. Pesqui. 12, No. 2, 292-309 (2010).
Classification: F32 C32 D32 D42
19
Let “Weishu” be called “Wuming” — Further discussion on the origin and development of decimal metric system in ancient China. (Chinese. English summary)
J. Liaoning Norm. Univ., Nat. Sci. 33, No. 3, 311-315 (2010).
Classification: A30
20
first | previous | 1 21 41 61 | next | last

Result 1 to 20 of 69 total

Valid XHTML 1.0 Transitional Valid CSS!