History


Help on query formulation
first | previous | 1 21 | next | last

Result 1 to 20 of 36 total

Standards and forms. Discovering functional relationships with the series of DIN-A-standards. (Normen und Formen. Funktionale Zusammenhänge an der Reihe der DIN-A-Formate entdecken.) (German)
Mathematik 5 bis 10 30, 30-31 (2015).
Classification: I23 F83 G33 M93 U73
1
Building scale models of D.C. memorials. (English)
Ohio J. Sch. Math. 70, 22-26 (2014).
Classification: F83 M83 D83
2
“Folding numbers". (“Zahlen falten".) (German)
PM Prax. Math. Sch. 56, No. 59, 21-30 (2014).
Classification: U60 F10 G10
3
Remarks on the surface area and equality conditions in regular forms. III: Multi-sided prisms. (English)
Nexus Netw. J. 16, No. 2, 487-500 (2014).
Classification: M80 G30 G60
4
Remarks on the surface area and equality conditions in regular forms. II: Quadratic prisms. (English)
Nexus Netw. J. 16, No. 2, 467-485 (2014).
Classification: M80 G30 G60
5
Remarks on the surface area and equality conditions in regular forms. I: Triangular prisms. (English)
Nexus Netw. J. 16, No. 1, 219-232 (2014).
Classification: M80 G30 G60
6
Folding, mathematization, area. I. (Pliage, mathématisation, aire. I.) (French)
Losanges, No. 24, 24-29 (2014).
Classification: G40
7
Barycenters of quadrangles. I. (Schwerpunkte von Vierecken. I.) (German)
Wurzel 48, No. 2, 35-41 (2014).
Classification: G40 G70
8
Surface area to volume ratio and metabolism: analysing small group-task as Vygotskian activity. (English)
Smith, C. (ed.), Proceedings of the British Society for Research into Learning Mathematics (BSRLM). Vol. 33, No. 3. Proceedings of the day conference, University of Edinburgh, UK, November 16, 2013. London: British Society for Research into Learning Mathematics (BSRLM). 25-30 (2013).
Classification: C30 C60
9
Sport courts and fields: a context for estimation and tessellation. (English)
Math. Teach. Middle Sch. 18, No. 9, 566-570 (2013).
Classification: M90 N20 G90 F90
10
Pythagoras believed that ‘the gods’ used the small whole numbers to design the universe. What was his evidence? (English)
Math. Teach. (Derby) 237, 7-13 (2013).
Classification: G40 F60 A60
11
Geometrical tree: leaf mass \& leaf-tree relationship. II. (English)
Math. Medley 39, No. 2, 32-39 (2013).
Classification: M60
12
A square peg in a round hole: stretching the argument to its limit. (English)
Math. Sch. (Leicester) 42, No. 4, 18-20 (2013).
Classification: G70
13
Spheres, cylinders and conces. (English)
SYMmetryplus, No. 52, 10-11 (2013).
Classification: G30 G40 Reviewer: Peter Dürr (Linkenheim)
14
Reuleaux polygons and a theorem of Andrew Jobbings. (English)
Math. Sch. (Leicester) 42, No. 3, 18-19 (2013).
Classification: G40 Reviewer: Peter Dürr (Linkenheim-Hochstetten)
15
Areas within areas. (English)
Math. Teach. (Reston) 106, No. 3, 234-237 (2012).
Classification: G40 G60 U70
16
Fibonacci pegs and an angel theorem. (English)
Math. Sch. (Leicester) 41, No. 5, 10-11 (2012).
Classification: G40 Reviewer: Peter Dürr (Linkenheim)
17
Extending spinning pegs. (English)
Math. Sch. (Leicester) 41, No. 3, 25-27 (2012).
Classification: G40
18
Spinning pegs and Varignon’s friends. (English)
Math. Sch. (Leicester) 41, No. 2, 23-25 (2012).
Classification: G40
19
The problem with square pegs and Pólya’s lesson on how to solve it. (English)
Math. Sch. (Leicester) 40, No. 3, 16-19 (2011).
Classification: G40 G60
20
first | previous | 1 21 | next | last

Result 1 to 20 of 36 total

Valid XHTML 1.0 Transitional Valid CSS!